THE UNIVERSITY
e OF AUCKLAND

FACULTY OF ENGINEERING

Yacht Research Unit

Use of Gomboc to Predict the
Performance of a Hydro-Foiled Moth

Internship at the Yacht Research Unit - The University of Auckland

MIGUEL BRITO

Department of Mechanical Engineering
Yacht Research Unit

THE UNIVERSITY OF AUCKLAND
Auckland, New Zealand 2019

INTERNSHIP REPORT 2019

Use of Gomboc to Predict the
Performance of a Hydro-Foiled Moth

MIGUEL BRITO

wea THE UNIVERSITY
< OF AUCKLAND

*

FACULTY OF ENGINEERING

Yacht Research Unit

Department of Mechanical Engineering
Yacht Research Unit
THE UNIVERSITY OF AUCKLAND
Auckland, New Zealand 2019

Use of Gomboc to Predict the Performance of a Hydro-Foiled Moth
Miguel Brito

© MIGUEL BRITO, 2019.

miguel brito95@hotmail.com

Supervisor: Prof. Richard Flay, Department of Mechanical Engineering
Supervisor: Benjamin Goodwin, Department of Mechanical Engineering

Internship Report 2019

Department of Mechanical Engineering
Yacht Research Unit

The University of Auckland

NZ-1023 Auckland

Telephone +64 9 373 7999

Cover: Moth foiling in Gomboc.

Typeset in BTEX
Auckland, New Zealand 2019

v

Use of Gomboc to Predict the Performance of a Hydro-Foiled Moth
Miguel Brito

Department of Mechanical Engineering

Yacht Research Unit

The University of Auckland

Abstract

Traditionally, sailing yachts are evaluated using VPP polar plots, which provide
an indication of the yacht’s potential speeds. However, the need to assess their
performance in a much more broad way has lead to the development of sailing
simulators. Gomboc is a sailing simulator able to run virtual races for different
sailing configurations. This report presents thus how to use this software to predict
the performance of a foiling Moth.

A model is successfully implemented and a simple comparison between two differ-
ent foil designs is presented. It is concluded that the current aero model needs
improvement in order to increase the accuracy of the results, as well as the weight
data.

Keywords: Sailing Simulator, Gomboc, VPP, Moth, Hydrofoils.

Acknowledgements

My first acknowledgements must obviously go to Professor Richard Flay and Pro-
fessor Lars Larsson for making this internship possible. It proved to be an amazing
experience, which for sure enriched me both professionally and personally.

Second, I would like to thank Benjamin Goodwin for supervising me and sharing his
sailing knowledge. I am very grateful to you for offering me the chance of working
with a really interesting topic. Also, thank you and your parents for the peaceful
week spent at the farm!

Furthermore, I would also like to thank SumToZero Limited for providing the sim-
ulator software Gomboc and for the time spent to answer my questions about it,
which was essential for the work presented in this report. I am also thankful to the
University of Auckland for arranging everything I needed to be able to work at the
Yacht Research Unit.

Finally, thank you to all the Foiling Yacht Innovation team for all the interesting
discussions. It was a great experience to work with a team in the other side of the
world. T am looking forward for the first Moth!

Auckland, November 2019
Miguel Brito

vii

Contents

Abstract
Acknowledgements
List of Figures
List of Tables
List of Symbols
List of Acronyms and Initialisms
1 Introduction
1.1 The International Moth Class
1.2 Background and Context
1.3 Gomboc
1.4 Internship Goal
2 Theory
2.1 Parts of Gomboc
2.1.1 Gomboc.exe e
2.1.2 JavaScript
2.2 Understanding Gomboc
2.2.1 Blocks
2.2.2 Prerequisites.
2.2.3 Model Body States and Parameters
2.2.3.1 Body States
2.2.3.2 Parameters,
2.2.4 Reference Frames
3 Methodology
3.1 Working Directory o
3.2 Root Level Connections
3.3 Blocks Block.
3.3.1 BoatBlock
3.31.1 BodyBlock
3312 FMBlock
3.3.1.3 MassBlock,

vii

xiii

xvii

xXix

xx1i

13
13
14
16
16
16
17
18

ix

Contents

3.3.1.4 Body States Blocks

3.3.1.5 Frames Blocks

3.3.1.6 Locked and Function Parameters Blocks

3.3.1.7 Free Parameters Blocks

3.3.1.8 Weight Block

3.3.1.9 HullBlock.

3.3.1.10 Centreboard Block

3.3.1.11 Rudder Block

3.3.1.12 AeroBlock

3.3.1.13 Body Graphics Block

332 Ocean Block
3.3.3 Wind Block

3.4 Devices Block e
3.5 Overlays
3.6 Solvers

4 Results and Discussion

5 Conclusion and Future Work

References

List of Figures

1.1
1.2

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

3.26
3.27
3.28
3.29
3.30
3.31
3.32

Moth Worlds 2018 Champion: Paul Goodison. 2
Moth geometry example - Side view. 3
Degrees of freedom of a boat. (Fossati, 2009) 9
Root Level Connections. 14
Root Level in JavaScript. 15
Default Configuration in GUIL. 15
Blocks Level Connections. 16
Body block defined as a rigid body in JavaScript. 16
Boat Level Connections. 17
FM block defined in JavaScript. 17
Mass block defined in JavaScript. 18
Body States blocks defined in JavaScript. 18
Frames blocks defined in JavaScript. 19
Variable boatSpec defined in JavaScript. 20
Merging .bic files to "Boat" block in JavaScript. 20
Locked and Function Parameters Blocks defined in JavaScript. 21
Free Parameters Blocks defined in JavaScript. 22
Weight Block in Masses tab in Gomboc’s GUL. 22
Weight Block in Forces tab in Gomboc’s GUL. 22
Weight Block defined in JavaScript. 23
Hull Block defined in JavaScript. 24
Hydrostatics function outputs in Gomboc’s GUL. 25
Naming a surface in Rhinoceros. 26
Centreboard bearings and immersion defined in JavaScript. 26
Centreboard Block defined in JavaScript - Part 1. 27
Foil editor tool in Gomboc’s GUL. 28
Foil properties window in Gomboc’s GUL. 28
Controls in the chord/sweep window to design the foil in Gomboc’s

GUL . . e 29
Sections window in Gomboc’s GUL. 29
Sections window with the different flap angles in Gomboc’s GUL. . . . 31
Centreboard Block defined in JavaScript - Part 2. 32
Centreboard Block defined in JavaScript - Part 3. 33
Centreboard foil selection in Gomboc. 33
Rudder rake and yaw defined in JavaScript. 34
Aero block - Sail forces and moments defined in JavaScript. 34

List of Figures

Xiv

3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52

4.1

Aero block - Windage defined in JavaScript. 35
Moth parts graphical representation defined in JavaScript. 36
Convert Graphics Model in Gomboc’'s GUL. 37
Initial sail scene file. 37
Sail material file. 38
Final sail scene file. 38
Flat Ocean defined in JavaScript. 38
Moth Graphics. 39
Jonswap Ocean defined in JavaScript. 40
Constant Wind defined in JavaScript. 40
ARMA Wind defined in JavaScript. 41
Devices block snippet defined in JavaScript. 42
Overlays block output in Gomboc’s GUL. 43
Overlays block - Data defined in JavaScript. 44
Overlays files loaded in JavaScript. 44
Overlays block - Hull displacement percentage bar defined in JavaScript. 45
Solvers files loaded in JavaScript. 45
Dynamics solver defined in JavaScript. 45
Optimisation solver defined in JavaScript. 46
Optimisation solver defined in JavaScript. 47
Centrefoil and rudderfoil geometries - Test case. 49

List of Tables

1.1 Moth particulars. 2

Xvil

List of Symbols

A

AR
AW A
AWV

Cp2p

mcrew

Myl

Planform area

Aspect ratio

Apparent wind angle

Apparent wind velocity

Mean chord

Root chord

Tip chord

Three dimensional drag coefficient
Two dimensional drag coefficient
Induced drag coefficient

Junction drag coefficient

Wave drag coefficient

Wave and spray drag coefficient
Turbulent boundary layer frictional coefficient
Frictional coefficient

Three dimensional lift coefficient
Two dimensional lift coefficient per degree
Centre of gravity

Pressure coefficient

Total resistance coefficient

Total drag force

Junction drag

Wave drag

Wave and spray drag

Froude number

Submergence Froude number
Gravity

Foil submergence

Characteristic length of a grid cell i
Relative cell size

Foil submergence to mean chord ratio
Characteristic length

Total lift force

Crew mass

Hull mass

=
] 1 1 I I I 1 1 I B E E } [e] I

=

2222,

E B &

Z B

kg

Xix

List of Acronyms and Initialisms

2D
3D
CFD
CPU
EXP

IMS
ITTC
kts
N-S
RANS
SST
VPP
VOF

Two Dimensional

Three Dimensional

Computational Fluid Dynamics
Central Processing Unit
Experimental

Horse Power

International Measurement System
International Towing Tank Conference
Knots

Navier-Stokes

Reynolds-Averaged Navier-Stokes
Shear-Stress Transport

Velocity Prediction Program
Volume of Fluid

xxi

1

Introduction

This report focuses on guiding lines about how to use the software Gomboc for the
Foiling Yacht Innovation (FYT) project. This team is mostly composed by students
from The University of Auckland who is leading the way to design and build a foiling
Moth with the goal to compete it in the World Championships.

The following sections introduce the International Moth Class, general aspects con-
cerning the mechanics of a foiling boat and a brief description about the idea behind
Gomboc. Moreover, the internship goal is further explained.

1.1 The International Moth Class

The International Moth Class (IMC) is the fastest one person sailing dinghy in
the world. This class has been through a lot of development since the first Moth
appearance in 1928. Originally, the boat was a sailing narrow scow with a hard
chined hull. She was 3.40 m long with a single 7.4 m? mainsail and made of timber,
so weighed around 50 kg. More information about its early development and growth
can be read in Association (2019). The most used hull shape ended up converging
to a very narrow box shape with small hiking racks and started being made out
of carbon fiber, according to Henshall (2019). This step allowed to build a much
lighter Moth and hence the idea about implementing hydrofoils on her arised.

Hydrofoils are thin structures that operate underwater, which are either attached to
the boat or going through the hull. They are well known for their capability to fully
or partially raise the hull out of the water, therefore reducing drag by a substantial
amount when designed properly, and hence increasing speed. Looking at the initial
attempts, the most successful and reliable design was tried out by Andy Patterson
in 1994. Henshall (2019) mentions that he tried out a trifoiler configuration with
two foils aft mounted on the hiking racks and a diamond shaped bow foil. In 2000,
Brett Burvill competed in the Worlds in Perth with a trifoiler Moth designed with
surface piercing foils mounted on the rack’s tips and a large fixed T-foil rudder. He
showed that foiling Moths had huge potential by winning two heats of the event,
the first ever victories for a foiling Moth (Bethwaite, 2008). Shortly after this, the
class management considered Brett’s boat to be a foiling trimaran which violated
the class rules, so they banned wing mounted foils and required that foils exit the
hull below its waterline. Even under these restrictions, it did not take too long for
John Illet to come up with the still most used Moth foil design system; Bethwaite

1

1. Introduction

(2008) describes it as an inline dual fixed T-foil concept with a mounted wand on the
bow to control the center foil flap on its trailing edge and hence the ride height. The
rudder foil has no flap but the sailor can adjust its angle of attack via a twist grip
in the tiller extension mechanism. At this stage, the Moth fleet was proliferating
around the world, capable of reaching 14 knots upwind and 20 knots downwind in
just 10 knots of wind.

Today, the International Moth Class Association (IMCA) establishes the following
general information for the Moth design:

Particulars Value

Max overall length 3.355m
Max overall beam 2.250m
Max luff length 5.185m
Max mast length ~ 6.250 m

Sail area 8.250 m?

Hull weight Unrestricted, normally 10-20 kg

Rigged weight At least 26 kg

Skipper weight Unrestricted, normally 60-80 kg
Restrictions Multihulls, trapezes, moveable seats and

sailboards are prohibited.

Table 1.1: Moth particulars.

Nowadays, there are several different high performance Moths to choose from: Atomik,
Bieker, Exocet, Mach, Rocket or Thinnair. The actual world champion is Paul
Goodison from England sailing on a Mach2.5.

Figure 1.1: Moth Worlds 2018 Champion: Paul Goodison.

1. Introduction

1.2 Background and Context

The idea of lifting a boat out of the water is very simple in theory, but very compli-
cated in practice. The physics behind it are very similar to an airplane take off. Very
briefly, when an engine drives the whole aircraft at sufficiently high speed, the lift
is generated by the different velocities on the upper and lower sides, caused by the
wing shape and angle of attack. For a Moth, there are two types of lifting surfaces:
a sail, a centreboard and a rudder developing side forces, and hydrofoils, a centrefoil
and an elevator, developing a vertical force. Figure 1.2 illustrates an example of a
Moth geometry:

Figure 1.2: Moth geometry example - Side view.

When the wind hits the sails, the boat moves forward and at the same time heels
to leeward. If there would not be appendages under water, the boat would instead
move sideways since the aerodynamic side force is much greater than the aerody-
namic driving force. So, to achieve an equilibrium position, the under water body
is responsible for creating an equivalent hydrodynamic side force. However, to get
the most out of the Moth performance in upwind conditions the sailor heels her to
windward for several reasons (Beaver & Zseleczky, 2009). First, increasing the lever
arm of the helmsman’s weight increases the righting moment, as does the slight
windward shifting of the hull and rig’s centre of weight, and the slight leeward shift-
ing of the hydrofoils’ centre of effort (lift component). The way these forces balance
out the Moth translates to a much more stable sailing. Second, as the horizontals
(centrefoil and elevator) start working in an inclined plane, they will also generate
a side force component, which compensates the verticals’ (centreboard and rudder)
reduction of planform area, and hence side force, as the boat comes out of the water.
This is of the most importance to reduce the leeway angle. Finally, another factor
is related with the increased vertical component of the sail, which contributes to the
horizontals lifting force. Beaver and Zseleczky (2009) also mention that when sailing
downwind the heel angle does not have great influence on the Moth performance,
so it is mostly sailed upright in these conditions.

1. Introduction

A considerable hydrodynamic lift force is only possible in the presence of hydrofoils.
The stronger the wind, the larger the driving force, and hence the speed of the boat.
Therefore, when the flow velocity over the hydrofoils is sufficiently high, the lift is
large enough to raise the boat out of the water, reducing drag by a large amount.

1.3 Gomboc

Dan Bernasconi, one of Gomboc’s contributors and currently Head of Design of
Emirates Team New Zealand, said "Gomboc was the key to predicting lap times. It
is a combination of a Velocity Prediction Program (VPP), real-time simulation and
an appendage design package." (Wilkins, 2017). In other words, this software is a
sailing simulator able to run virtual races for different sailing configurations. One
of the most appreciated features is the opportunity to observe the performance of
a yacht for a wide range of different hydrofoils shapes, hence allowing to find the
most optimised hydrofoils for given sailing conditions.

Therefore, from the author’s point of view this software is the evolution of the
traditional VPP polar plots, since it provides much more information than just an
indication of the yacht’s potential speeds. In fact, it allows to better understand
the boat’s behaviour and handling in real time by, for instance, trimming the sails
or adjusting the appendages position. This not only saves a substantial amount of
time when fine-tuning the yacht in real life, but also money since different designs
can be tested without actually having to build them.

1.4 Internship (Goal

The goal of this project is to write JavaScript functions and scripts that give as
much control as possible as to how Gomboc operates the Moth.

1. Introduction

1. Introduction

2

Theory

Gomboc started being developed by Bernasconi in 2010. An incomplete documen-
tation for the software can be found in:

http://sumtozero.com/Documentation/__build/html/index.html

Which is outdated since 2013, but still offers useful insight about how the software
runs. Besides this web site, a more recent guide can be found inside the following
Gomboc’s directory:

Gomboc/Runtime/Help/index.html

As mentioned in section 1.3, Gomboc allows to predict and optimise the performance
of a sailing yacht. This chapter describes thus the more important parts of the
software and aspects to consider before building and running a Moth. Furthermore,
what is explained below is a blend of both documentations referred above plus the
author’s interpretation of the problem at hand.

2.1 Parts of Gomboc

The two most important parts in the software is the core executable itself, which is a
Windows executable compiled in C++, and an interactive JavaScript environment,
which provides as much control as possible as to how Gomboc operates.

2.1.1 Gomboc.exe

The physical and mathematical models are coded here, which are not accessible for
a normal user. It handles the internal management of reference frames and transfor-
mations, as well as inertial body states, accelerations, masses and model parameters.
Moreover, the aerodynamic forces are represented by surface fits to experimental or
computationally generated data, while the hydrodynamic ones by built-in models.
Furthermore, besides the dynamic solver, it is also possible to run an optimisation
functionality, which solves non-linear objective functions of many variables possibly
restricted with non-linear equality and inequality constraints. Finally, the Graphical
User Interface (GUI) is also controlled by the executable.

2.1.2 JavaScript

This part runs in partnership with the core executable. It handles Gomboc’s higher-
level functionality by reading model input files, managing model configurations,

7

http://sumtozero.com/Documentation/_build/html/index.html
Gomboc/Runtime/Help/index.html

2. Theory

initialising models, creation of force components based on previously generated sur-
face fits, parameters pre-processing or high-level manipulation of 3D rendering. This
is the part that a normal Gomboc user should care about. Each feature is explained
in more detail in the sections ahead.

2.2 Understanding Gomboc

In this section, background theory about the software fundamentals is presented.
The goal is to prepare the right mindset for building and running a model.

2.2.1 Blocks

Gomboc builds its models using interconnected blocks, and each one of them has
inputs and outputs. Blocks support multiple output types: the most common type
are numbers, but also vectors and more complex objects like ocean and wind fields
are supported. A block is therefore simply a function. The input of the model is the
collection of states, which are explained in section 2.2.3.1, that can be modified by
the solver, input devices or GUI. The outputs of the model are computed in function
of the states.

Furthermore, blocks are not executed in the order they are declared in the config-
uration file. The connections in between the blocks will define the dependencies
in between the blocks and drive the execution order. Cyclic connections are not
allowed. The block system might evaluate the blocks in different threads.

2.2.2 Prerequisites

Before describing the model’s parameters, constraints, components and visualisa-
tion, one should have some important information ready to use:

e In order to calculate the hydrodynamic forces on the hull, a solid model
in IGES format is needed for producing the graphical representation of the
boat.

o« Weight data providing mass, centre-of-mass and moments of inertia about
the centre-of-mass for the different boat parts.

e Aerodynamic data including sail performance and windage, from Wind-
Tunnel Testing (WTT), Computational Fluid Dynamics (CFD) or formulae.

2.2.3 Model Body States and Parameters

This section explains how many body states are needed in a model and how to define
parameters.

8

2. Theory

2.2.3.1 Body States

In equilibrium position a sailing yacht moves on a straight course at constant speed.
However, in reality this is not always the case as the boat is free to move in six
degrees-of-freedom; half are linear and the remaining half are rotational:

Surge: the linear longitudinal motion along the X-axis.
Sway: the linear lateral motion along the Y-axis.

Heave: the linear vertical motion along the Z-axis.

Roll: the rotation longitudinal motion around the X-axis.
Pitch: the rotation transversal motion around the Y-axis.

Yaw: the rotation motion around the Z-axis.

To better illustrate it, Figure 2.1 presents these six motions.

heave z

Figure 2.1: Degrees of freedom of a boat. (Fossati, 2009)

Furthermore, any rigid body has twelve inertial states:

o 3 position states, described by a vector from the Inertial Reference Frame to

the Body’s Reference Frame.

« 3 orientation states, described by Euler angle rotations from an Inertial Ref-

erence Frame to the Body’s Reference Frame.

« 3 linear velocity states, which are the time-derivatives of the position states in

the Body’s Reference Frame.

o 3 angular velocity states, which are the time-derivatives of the orientation

states in the Body’s Reference Frame.

So, each degree-of-freedom has two inertial states associated with. Thus, a sailing
yacht is described by:

o X-position
e X-linear-velocity or Speed

} Surge motion.

2. Theory

e Y-position

o Y-linear-velocity Sway motion.

o Z-position or Sinkage

o Z-linear-velocity eave motion

o X-rotation or Heel

+ X-angular-velocity Roll motion.

e Y-rotation or Trim

o Y-angular-velocity Pitch motion.

e Z-rotation or Leeway } Vaw motion

o Z-angular-velocity

The existence of these 12 states, transformations relating to their reference frames,
and the integration of their derivatives (for dynamic simulations) is about all the
mechanics that are built into Gomboc. However, it is possible to simplify the problem
and simply set to a constant value a given inertial state. For instance, the Moth’s
roll motion is quite unstable, so to overcome this problem it might be wise to set the
heel to a constant value and its angular velocity to zero when running the dynamics
solver, hence reducing the number of degrees-of-freedom to five.

2.2.3.2 Parameters

Besides the inertial body states, when performing simulations there are other quan-
tities of interest to describe the actual state of the model. These parameters can be
directly related to inertial body states, like speed or heel, or describe other condi-
tions of the model and /or environment, like rudder angle or true wind angle (TWA).
All parameters hold a scalar, floating-point signed value, and the way this value is
set depends on the parameter type:

o Locked. This parameter holds a value that can only be modified manually
by the user or by a script run. An example is the true wind speed, which
can be equal to a constant or, alternatively, dependent on a wind model (not
constant).

e Free. This parameter can either be changed manually during a dynamic run
or, instead, optimised when using the optimisation solver. Normally, an initial
value is assigned to it, as well as minimum and maximum values. Examples
could be the rudder rake or the sailor weight.

e Function. This parameter, as the name suggests, depends on other param-
eters’ value and cannot be set independently. The function is described by
any valid JavaScript expression, which can be a call to any standard or user-
defined JavaScript function. An example is the Velocity Made Good (VMG)
which is a function of Speed and Course Wind Angle (CWA). Besides this, the
parameters can represent inertial body states, since it is more convenient to
think about something named Heel than X-rotation.

10

2. Theory

2.2.4 Reference Frames

A reference frame in Gomboc is an entity that is parametrised by a 3-element zyz-
position vector and a 3-element Euler angle rotation vector. Positions, orientations,
velocities and forces can be measured within any reference frame.

Every Gomboc model contains, by default, two reference frames:

o An Inertial frame that is Earth-fixed. The position and orientation of all other
reference frames are internally stored relative to this.

o A Body reference frame that is fixed to the model (in this case, the boat),
moving and rotating with it.

In addition to these two default frames, other reference frames can be defined.
Information about how to build these can be consulted in:

Gomboc/class_ frame.html.

11

2. Theory

12

3

Methodology

This chapter explains, to the best of the author’s knowledge, how to build and run a
Moth model with the dynamics solver in Gomboc. After that, the optimisation solver
is also described. Note that what is presented here stands for the work developed
throughout this project, hence there are definitely ways to improve it.

3.1 Working Directory

It is wise to organise a coherent and intuitive Moth’s working directory. Thus, it is
divided now in:

e Aero

o Centreboard
o Graphics

e Hull

o Rudder

« VPP

In the VPP folder it is possible to find a .boc file, which acts like a main VPP
function. This is the file which is opened before running Gomboc. The Aero, Cen-
treboard, Hull and Rudder folders contain a .bic file each, which act as functions of
the main VPP function. Therefore, each boat part should be defined in the corre-
spondent .bic file. Note that the Centreboard and Rudder folders define both the
vertical and horizontal foil. Furthermore, as the name suggests, the Graphics folder
contains graphical information to be loaded once the .boc file is executed.

Finally, besides the folders referred above, one can also find another folder inside the
VPP one. It is called Configurations and contains the following folders with .bic

files:
e Input
e Ocean
o Optimisation
o Overlays
e Solver
e Wind

13

3. Methodology

3.2 Root Level Connections

At this stage, it is important to understand how the Gomboc.exe organises and
processes the information provided in JavaScript. Like described in section 2.2.1,
blocks are not executed in the order they are declared in the configuration files. So,
it is important to keep track of the connections’ paths. These can be observed in
the Model Definition tab in Gomboc’s GUI.

Therefore, the root level is presented first in Figure 3.1:

ForceReporiFrameMame MassReporitFrameName

f f

Blocks b Root > Graphics

v v

DefaultConfiguration Devices

Figure 3.1: Root Level Connections.

This is the big blocks group. The "Blocks" block is the one with the most in-
formation, hence it is extensively explained in section 3.3. The "Devices" block
implementation is described in section 3.4.

Figure 3.2 shows how to define part of the root level in JavaScript. This code snippet
can be found in the .boc file. Line 271 defines some blocks of the "Blocks" block, i.e.
the "Zero" block is simply a number output, in this case 0, and "InertialFrame" is
another block defined by a BL.* function, in this case BL.DatumFrame(), which
basically creates the inertial frame. These BL.* functions are defined in:

Gomboc/Runtime/Blocks

They are JavaScript functions which are generally used to declare blocks.

On line 276, the frame used to report the forces acting on the Moth is specified, while
line 277 defines the frame for the body masses. The reason for having different frames
here is related with the fact that, normally, it is more convenient to talk about forces
in the Z-direction acting in Earth-fixed rather than Body-fixed coordinate systems,
i.e. a Z-force perpendicular to the water plane than perpendicular to the boat deck.
Section 3.3.1.5 describes how to create these frames.

Lines 279 to 297 load the Graphics folder and set the camera definitions to use when
running the model.

14

3. Methodology

267 e
268 // Defining global objects

269 e
278 R.merge(’ ", {

271 "Blocks” : {

272 "Zero" : @,

273 "InertialFrame” : BL.DatumFrame(},

274 1,

275

276 "ForceReportFrametame” : "Boat.FrameWaterPlane”,

277 "MassReportFrameName” : "Boat.Frame”,

278

279 "Graphics™ : {

288 "SearchPath” : spec.boatPath + "/Graphics”,

281

282 "Modelsize": 18.3,

283

284 "AdditionalCameraPrasets”: {

285 "WR": {

286 Type: "OnboardUpright”,

287 Location: [&, @, 1.8],

288 x0ffsetChannel: "Block."” + boatSpec.Mame + ".CrewXPos",
289 yOffsetChannel: "Block."” + boatSpec.Name + ".CrewYPos”,
208 ViewerHeight: 8.8, // Rotate from helm position instead of rotating from feet
291 YawDampingTau: 8.5,

202 BodyName: "Boat”,

293 1.

204 1,

295

2086 "DefaultVRCameraPreset™: "WR",

297 },

208

299 "DefaultConfiguration™ : {

3ee "Selver” : "Dynamics”,

381 "Ocean™ : "Flat",

302 1,

303 I5F

Figure 3.2: Root Level in JavaScript.

Lines 299 to 302 refer to the default configuration when running Gomboc. In this
case, the default solver and default ocean are specified. Therefore, when opening
Gomboc’s GUI, one should expect what is shown in Figure 3.3:

Rudder |Rudder01 ~ | Centreboard Centreboarddl ~ | Solver | Dynamics ~ | Qcean Flat ~ | Wind | ARMA e

Figure 3.3: Default Configuration in GUL

Note that it is extremely important to not change the names of these blocks, oth-
erwise Gomboc either throws errors or does not operate correctly. In fact, there is
quite a large number of blocks in the .boc and .bic files that shall not have their
name changed. Thus, whenever a certain name is changed somewhere, the author
strongly recommends to restart Gomboc, open the .boc file and check if everything
is running normally, including the information in the different windows.

15

3. Methodology

3.3 Blocks Block

This is the block that saves all the information related with the boat, ocean and
wind configurations. The connections of this level can be visualised in Figure 3.4:

InertialFrame Boat =1
f f f
Dcean R Blocks » Wind
v v v
BaseTWs BaseTWS_kis BaseTWs

Figure 3.4: Blocks Level Connections.

The "InertialFrame" and "Zero" blocks are described in section 3.2. The "Boat" block
is the one with the most blocks inside and is responsible for handling everything
related with the Moth model; body states, parameters, frames, weights, as well as

the hull, centreboard, rudder and aero models. Next section explains in detail this
block.

3.3.1 Boat Block

The connections in this block are shown in Figure 3.6. It is important to note
that each box represents a block. The author decided to present some blocks inside
circles to emphasise the different block groups and to make it more intuitive to un-
derstand. A detailed explanation about how to implement these blocks in JavaScript
is presented in the following sections.

3.3.1.1 Body Block

The "Body" block is defined in the .boc file in a single JavaScript code line, which
is shown in Figure 3.5:

|
J

]
= L

[/ Body computes the derivatives, it's inputs are connected implicitly
"Body" : BL.RigidBody({1}),

Figure 3.5: Body block defined as a rigid body in JavaScript.

It is a crucial block since without it one is not able to compute the body states’
time-derivatives. It is implemented using the BL.RigidBody function.

16

3. Methodology

Frames

FrameRefLCECL
FrameBowspirit
| FrameWaterPlane |

—D{ Body |
@BodyGraphics

Body States

| Speedl | Speed_h‘tsl | Leeway |

[Heiont | [Heel | [Trim]

[two] [7Tws | [Tws_kis |

Blocks

Eree Locked and Function
Parameters Parameters

[HoG | [coc | [Twa |

[cwa] | vme ks |

Figure 3.6: Boat Level Connections.

3.3.1.2 FM Block

The "FM" block stands for Forces and Moments block. It works as a sum block that
recursively sums other "FM" blocks defined in under levels. Therefore, a main "FM"
block must be directly connected to the "Boat" block since it outputs the total forces
and moments sum from the different boat parts (aero, hull, centreboard, rudder) as
well as the different weight components. It must also be implemented in the .boc
file as it is shown in Figure 3.7:

71 ‘ "FM" : BL.ForceSum{{TargetFrame : "{Framz}"}),

Figure 3.7: FM block defined in JavaScript.

One can observe that it is defined using the BL.ForceSum function, where the
target frame is specified as the body frame. The frames creation is discussed in
section 3.3.1.5.

17

3. Methodology

3.3.1.3 Mass Block

The "Mass" block works exactly as the "FM" block, but as a mass sum block. Its
role is to add the different masses in the Weight block. Its implementation can be
visualised in Figure 3.8:

98 /f Defining the mass components

99 "Mass" : BL.MassSum({TargetFrame : "{Frame}"}),

Figure 3.8: Mass block defined in JavaScript.

It is defined using the BL.MassSum function and, similarly to the "FM" block, the
target frame is the body frame. It is also implemented in the .boc file.

3.3.1.4 Body States Blocks

The body states in Figure 3.6 are defined in the .boc file as it is shown in Figure
3.9:

5L "x" 1 BL.State({Init : 8, Derivative : "{Body.dxdt}"}),
56 "y" 1 BL.State({Init : 8, Derivative : "{Body.dydt}"}),
57 "z" 1 BL.State({Init : 8, Derivative : "{Body.dzdt}"}),
L8

59 "e" : BL.State({Init : -8.32491, Derivative : "{Root.Zero}"}),
60 "f' 1 BL.State({Init : .08, Derivative : "{Body.dfdt}"}),
61 "g" : BL.State({Init : @.85, Derivative : "{Body.dgdt}"}),
62

63 "u" : BL.State({Init : 4, Derivative : "{Body.dudt}"}),
64 "v" 1 BL.State({Init : @, Derivative : "{Body.dvdt}"}),
65 "w" : BL.State({Init : @, Derivative : "{Body.dwdt}"}),
66

67 p" ¢ BL.State({Init : @, Derivative : "{Root.Zero}"}),
68 q" : BL.State({Init : @, Derivative : "{Body.dgdt}"}),
69 "r" ¢ BL.State({Init : @, Derivative : "{Body.drdt}"}),

Figure 3.9: Body States blocks defined in JavaScript.

Coming back to section 2.2.3.1, the body states are related with Figure 3.6 by:

+ X-position — 'x' X-linear-velocity — "u"
+ Y-position — "y" o Y-linear-velocity — "v"
e Z-position — "z o Z-linear-velocity — "w"
e X-rotation — "e' o X-angular-velocity — "p"
e Y-rotation — "f" o Y-angular-velocity — "q"
 Z-rotation — "g' o Z-angular-velocity — "r'

All body states blocks are built using the BL.State function, which assigns an
initial value to each block and allows to specify how the correspondent derivative

18

3. Methodology

should be computed. For instance, the "u" block, which is the yacht’s speed in the X-
direction, has an initial value equal to 4 m/s and its derivative in time is calculated
using the "Body" block, which is exactly the block responsible for handling the time-
derivatives of the body states, like mentioned in section 3.5. On the other hand,
since the Moth is quite an unstable boat when it comes to roll motion, it might be
wise lock the "e" block, which is the heel angle (X-rotation) in radians, by assigning
a given value and then setting the time-derivative to zero. For obvious reasons, the
same procedure must be done for the block "p", which is the X-angular-velocity.

3.3.1.5 Frames Blocks

The frames in Figure 3.6 are defined in the .boc file as it is shown in Figure 3.10:

38 R.merge("Blocks." + boatSpec.Mame, {

31 /f This is the body frame

32 "Frame"” : BL.FrameXEUPfromDatum({

33 Translation s "[xY, AvEs fz317.

34 EulerxyZ : "[{e}, {f}, {g}]",

35 LinearVelocity : "[{u}, {v}, {w}]",

36 AngularVelocity : "[{p}, {9}, {r}l",

37 1.

38

39 "FrameRefLCECL" : BL.FrameAlignToInertialZ({

48 Frame : "{Frame}"”,

41 R : [boatSpec.xReflLCB, &.8, @.8],

42 1.

43

44 "FrameBowspirit" : BL.FrameAlignToInertialZ({

45 Frame : "{Frame}",

46 R : [boatSpec.xBowspirit, 8.8, 8.8],

47 1

43

49 "FramekaterPlane” : BL.FrameProjectTolnertialZi{
56 f/fInertialFrame : "{Root.InertialFrame}", f/f Implicitly mapped
51 [fFrame : "{Frame}"”, ff Implicitly mapped
52 R : [8,8,0],

53 1.

Figure 3.10: Frames blocks defined in JavaScript.

The "Frame" frame is the body frame and the one rigidly linked to the body positions,
rotations and velocities, i.e. the body states blocks. The BL.FrameXEUPDatum
function is used to build a reference frame translated from the datum origin, i.e. the
'InertialFrame".

Furthermore, it is convenient to build other frames translated to a given position
on the body relatively to the body frame, because it is of interest to get a velocity
at a specific point on the body or even to measure the boat height relatively to the
bow. Therefore, for the first case, the "FrameRefLCBCL" frame is built using the
BL.FrameAlignTolnertialZ function, which builds a reference frame that has its

19

3. Methodology

Z-axis aligned with the inertial frame and its X-axis in the plane defined by the X-
axis of the body frame and the Z-axis of the inertial frame. This frame is translated
in the X-direction relatively to the body frame "Frame" by boatSpec.xRefLCB.
This boatSpec is a variable that defines different particulars of the Moth. It is
implemented in the beginning of the .boc file as Figure 3.11 shows:

7 S m o e
3 // Defining the boat

4] L
18 var boatSpec = {

11 “Nama" : "Boat”,

12 “CLB=am"” 2.25, /f centreline hull beam

13 "xRefLCB" 1.48, // hull longitudinal centre of buoyancy

14 "xAeroRef” 1.48, // sail longitudinal centre of pressure

15 "xFoiloc” 1.88, // x distance from transom of the foil QC (quarter chord)
16 "xRudderqQC” : -8.58, // x distance from transom of the foil QC

17 "xBowspirit" : 3.88, // x distance from transom

18

19 "AeroPath” : spec.boatPath+ ' Aero/Aercdl/Asrodl.bic’,

20 "HullPath" : spec.boatPath+ 'Hull/Hull@l/Hull@l.bic",

21 "RudderPath” : spec.boatPath+'Rudder/Rudder@l/Rudderdl.bic”,

22 "CentreboardPath” : spec.boatPath+'Centreboard/Centreboardel/Centreboardel.bic’,

23

24 "kMirror" : a8,

25 "EnableFsI” » false,

26 "ShowFoilMeshGraphics™ @ false,

27 "ShowHydrostaticsMesh™ @ false,

28 15

Figure 3.11: Variable boatSpec defined in JavaScript.

Inside the boatSpec variable one can define as many variables as wanted. This
variable is very handy to use throughout the code. Lines 19 to 22 save the different
.bic files” paths to be used later when merging them to the "Boat" block as Figure
3.12 shows:

181 7
182 /{ Include externally defined components

183 7 2
184 R.mergeBicFile("", boatSpec.feroPath, boatSpec);

185

186 // Include components (Hull, Centreboard, Rudder)

187 R.merge("", bic{spec, boatSpec.HullPath, boatSpac));

188 R.merge("", bic(spec, boatSpec.CentreboardPath, boatSpec));

189 R.merge("", bic{spec, boatSpec.RudderPath, boatSpec));

Figure 3.12: Merging .bic files to "Boat" block in JavaScript.

Furthermore, in Figure 3.11, line 24 is related with the free surface effects on the
horizontal foils. One can neglect these effects by specifying it to zero or taking it to
account by setting it to 1.0, perfect mirror, or -1.0, negative mirror. Lines 25, 26 and
27 give the option to include or not (either true or false) fluid-structure interactions,
foil mesh graphics, and hydrostatics mesh, respectively.

Finally, coming back to Figure 3.10, the "FrameBowspirit" frame is defined in the
same way as the "FrameRefLCBCL", but with a different translation value in the
X-direction.

20

3. Methodology

Last but not least, the "FrameWaterPlane" frame is used to report the body forces
and moments. It is built using the BL.FrameProjectTolnertialZ function, be-
cause, like mentioned in section 3.2, it is more convenient to express the Z-forces
perpendicular to the water plane than perpendicular to the boat deck. Therefore,
this frame has the the XY-plane projected onto the inertial frame.

3.3.1.6 Locked and Function Parameters Blocks

As mentioned in section 2.2.3.2, there are different types of parameters. First, the
locked and function parameters are shown in Figure 3.13:

~

-
~l o

// Get some parameters from the boat state and wind

"Spead” : "norm({FrameRefLCBCL}.velocityOfOrigin()[1], {FrameRefLCBCL}.velocityoforigin()[e])",
78 "Speed_kts" : "{Speed} * 3688 / 1852",
79 "Lesway"” : "atan2d({FrameRefLCBCL}.velocityOfOrigin()[1], {FrameRefLCBCL}.velocityOforigin()[e])",
88 "Height" : "{FrameBowspirit}.coriginInFrame({Root.InertialFrame})[2]",
81 "Heel" @ "{e} * 18@/pi",
82 “Trim" ¢ “{f} * 18@/pi",
83
84 "TWD" : "{Root.Wind}.twdAtRefH{{x}, {v}}",
85 "ThS" : "{Root.Wind}.twsAtRefH({x}, {¥v})",
6 "THS kts' : "{TWS} / 1852 * 368@",
88 "HDG" : "aLimit3ee(oe - {g} * 188/pi)", // Heading
89 "coG" : "alimit36@({HDG} - {Leeway})", // Course over ground
98 "Thia" : "alimitise({TWD} - {HD
91 "Cha” : alimitise({TwAa} + {Le) // Course wind angle
92 "WMG_kts" i "{Spead_kts} * cosd({CWA})",

Figure 3.13: Locked and Function Parameters Blocks defined in JavaScript.

The block "Speed", which is the yacht’s speed in the direction of motion, is one
example of a locked parameter. It depends on the X and Y velocity components
of the frame "FrameRefLCBCL", which are automatically updated as the model is
run in Gomboc. Therefore, it holds a value that, in this case, can only be modified
by running the software. The "Height" block is another case of a locked parame-
ter, because it is calculated by estimating the Z-coordinate in the frame "Frame-
Bowspirit" relatively to the frame 'InertialFrame'. Note that the height is com-
puted at the bowspirit to provide a more accurate input for the wand function, and
hence for the flap angle on the centrefoil. Further down on line 84, the command
{Root.Wind}.twdAtRefH({x}, {y}) refers to the Wind block defined in the
root level and computes the true wind direction at the reference height specified in
the "Wind" .bic file, and in the actual X and Y-position of the yacht when running
Gomboc. The author recalls that these names should not be changed, otherwise the
command does not simply work.

On the other hand, the "Speed_kts" block is a function parameter, since its value
depends on the "Speed" block. The same goes, for instance, for the "Heel" and "Trim"
blocks, which values depend on body states.

3.3.1.7 Free Parameters Blocks

Once again, as mentioned in section 2.2.3.2, these parameters can either be changed
manually by the user (if a keyboard key is assigned to the parameter) or alternatively

21

3. Methodology

by the optimiser solver. To achieve this, they must be specified using the BL.State
function, where an initial value is given to the block, as well as a minimum and
maximum value. If running the optimiser solver, one must add Optimise: true in
the function inputs, as it can be seen in Figure 3.14:

94 "Crewlleight” @ BL.State({ Init : 75, Min : 65, Max : 85 }),

a5 "CrewXPos" : BL.State({ Init : ©.2, Min : &, Max : 1.2, Optimise: true }),
96 "CrewYPos" : BL.State({ Init : boatSpec.CLBeam/2, Min : -boatSpec.CLBeam/2, Max : boatSpec.CLBeam/2, Optimise: trus }),

Figure 3.14: Free Parameters Blocks defined in JavaScript.

3.3.1.8 Weight Block

This block contains information regarding masses, centre of masses and inertias
about centre of masses of each boat part. In fact, one can add as many parts as
wished. So, for instance on line 104 in Figure 3.17, the hull weight is described
using the BL.Mass function with inputs regarding its mass, centre of mass and
inertia about centre of mass. For the purpose of this project, the centre of masses
are approximated using simple formulas, like commented out in Figure 3.17. The
different weights can then be visualised in Gomboc’s GUI as Figure 3.15 shows:

Masses F X
Filter by name. .. Mass CoM x CoMy CoM z I xx I yy lzz
~ Boat 1028 0.99 07 0.67 172 204 235
~ Weight
Boom 2 1.10 -0.00 0.75 1 3 2
Centreboard 2 1.20 0.00 -0.57 1 5 5
Crew 75 0.90 1.13 0.70 132 a7y 156
Hull 15 1.40 -0.00 020 1 42 42
Mast 2 1.60 -0.00 220 10 18 a
Rudder 2 -0.50 0.00 -0.45 0 1 0
Sail 4 1.40 -0.00 220 25 29 15
Wings T 075 -0.00 0.50 2 T 6
Masses Forces Constraints

Figure 3.15: Weight Block in Masses tab in Gomboc’s GUL

Forces g X
¥ Filter by name. . Fx Fy Fz Mx My Mz
~ Boat 180 -378 -251 243 384 31
* Aero 257 -522 180 1256 206 -1015
* Centreboard -28 125 357 -3 -617 217
> Hull -26 0 208 11 -288 1
* Rudder -12 19 L] -2 39 -13
~ Weight 0 0 -1056 -1019 1045 0
Boom 0 0 -15 -4 16 0
Centreboard 0 0 -15 3 26 0
Crew 0 0 -736 -854 G662 0
Hull 0 0 -150 -10 210 0
Mast 0 0 =20 -15 a1 0
Rudder 0 0 -15 2 -7 0
Sail 0 0 -40 =30 137 0
Wings 0 0 -66 -1 49 0
Forces Masses Constraints

Figure 3.16: Weight Block in Forces tab in Gomboc’s GUI.

22

3. Methodology

181
182
1e3
164
1e5
186
187
18
189
1ie
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
178
171
172
173
174
175
176
177
178
179

"Weight" : {
"FM" : BL.ForceSum{{TargetFrame : "{".Frame}"}),
"Hull" : BL.Mass({
Mass : 15.3e,
CoM : [1.48, @, @.48/2],
IAboutCoM : [
[15.3@ / 2 * sqr(e.2e), @, e],
[e, 15.38 / 12 * (3*sqr(8.28) + sqr(3)), @],
[e, @, 15.38 / 12 * (3*sqr(@.28) + sqr(3))],

1
DB
"Wings" : BL.Mass({
Mass 1 b6.78,
ColM : [e.75, @, @.58],

IAboutCoM : [
[6.7 / 12 * 8.8 * sgr(1.9), @,],
[8, 6.7 / 12 * 8.8 * sqr(2.8), @],
[e, 8, 6.7 / 12 * 8.8 * (sqr(1.8) + sqr(2.@))],

1
1)
"Sail” : BL.Mass({
Mass 14,18,
CoM : [boatSpec.xéeroRef, @, 2.28],

IAboutCoM : [
[4.1 / 12 * 8.8 * sqr(4.58), @, @],
[B, 4.1 / 12 * e.8 * sgr(2.20), 8],
[e, @, 4.1 / 12 * 8.8 * (sqr(2.28) + sqr(4.58))],
1,
)

"Mast" : BL.Mass({
Mass H B
ColM : [1.68, @, 2.28],
IAboutCoM : [
[e, o, o],
[e, 2 / 12 * sqr(4.58), @],
[e, 8, 2 / 12 * sqr(4.58)],
1.
s

"Boom” : BL.Mass({
Mass : 1.5,
ColM : [1.1@, @, 8.75],
IAboutCoM : [
[e, o, o],
[e, 1.5 / 12 * sqr(2.20), @],
[e, 8, 1.5 / 12 * sqr(2.28)],

1.
s
"Centreboard” : BL.Mass({
Mass 1 1.5,
Col : [1.8e, e, (-0.03-1.18)/2],
IAboutCoM : [
[1.5 / 12 * sqr(1.18), @8, 8],
[e, 1.5 / 12 * sgr(e.11), 8],
[B, @, 1.5 / 12 = (sqgr{1.18) + sgr(€.11))}],
1.
s
"Rudder” : BL.Mass{{
Mass 1 1.5,
CoM : [-8.5@, 8, (-8.82-8.98)/2],
IAboutCoM : [
[1.5 / 12 * sqr(8.98), B8, 8],
[e, 1.5 / 12 * sgr(e.10), 8],
[B, @, 1.5 / 12 * (sqr{8.98) + sqgr(6.18))],
1.
s

"Crew"” @ BL.Mass({
Mass @ "{~.CreuwwWsight}"”,
CoM @ ["{".CrewXPos}", "{*.CrewYPos}", @.7]
¥
I
I H

// Approximated as cylinder with r=8.2

// Approximated as thin rectangle

// Approximated as thin rectangle
// sail height = 4.2em
// Sail base = 2.2@m

// Approximated as rod with L = 4.28m

/i Approximated as rod with L = 2.28m

/i Bpproximated as thin rectangle

// Disregarding the emmersed part
/{ Approximated as thin rectangle

Figure 3.17: Weight Block defined in JavaScript.

23

3. Methodology

Besides this, on line 102 a "FM" block is used. Its purpose is to register the gravity
forces for each part of the boat. The outcome in Gomboc’s GUI is shown in Figure
3.16. One can also observe the forces for the "Aero", "Centreboard", "Hull" and
"Rudder" blocks, but these are due to the dynamic interaction of the Moth with the
surrounding fluids (air and water).

3.3.1.9 Hull Block

The "Hull" block is defined in the respective .bic file, which can be seen in Figure
3.18:

R.merge("Blocks."+boatSpec.Name+" .Hull", {
6 "FM" : BL.ForceSum({TargetFrame : "{"~.Frame}"}),
8 "Hydro" : BL.Hydrostatics({
9 "IGES" : spec.ownPath+"Hullel.igs",
18 "Surfaces": {
11 HullPort : {nu: 15, nwv: 15},
12 HullStbd : {nu: 15, nw: 15},
13 Transom : {nu: 15, nv: 15}, // Commented for transom drag
14 ¥s
15 "FMHama" : "FMT,
16 "Damping"” : 8.6,
17 "SkinFriction™ : @.875,
18 "kWaveDrag" :1.7e,
19 1.
28
21 // Displacement percentage of total mass of boat (including crew)
22 "HullDisplPercent™ : "18@8 * {Hydro.DisplacementWolume} * {Root.Ocean}.rho() / {"~.Mass}.mass()",
23 1
24
25 if (boatSpec.ShowHydrostaticsMesh) {
26 R.merge("Blocks."+boatSpec.Name+".Hull", {
27 "Hydro" : {
28 "@araphicshodes” @ {
29 "Shape" : {
38 "Type" : "HydrostaticsShape”,
31 "Material”: "Hull/Hulleil/Carbon.material.xml”,
32 }s
33 b
34 1
35 1)s
36 1

Figure 3.18: Hull Block defined in JavaScript.

So, on line 6 a "FM" block is used. It simply registers the hull forces and mo-
ments when running Gomboc. One should note that the target frame is specified
as ~ .Frame, where the hat, ~, makes reference to the frame "Frame" defined in
the "Boat" block, i.e. one level up. To link the hull hydrodynamics with this "FM"
block, one must crete a "Hydro" block defined by a BL.Hydrostatics function, as
it is shown on line 8. This function only solves the hull hydromechanics (hydro-
statics and hydrodynamics, even though the function is only called hydrostatics).
The windage is accounted for in the "Aero" block. In fact, one can visualise all the
properties captured by this function by looking into the channels tab in Gomboc’s
GUI. Part of these properties are shown in Figure 3.19.

24

3. Methodology

Channels =
Filter channels..

Hull
Fii{Boat FrameWaterPlane}Fx -26.26
Fii{Boat FrameWaterPlane}Fy 0.00
FitBoat. FrameWaterPlanelFz 208.33
FiviBoat. FrameWaterPlana}iix 10.90
Fii{Boat FrameWaterPlane}hiy -288 23
Fii{Boat FrameWaterPlane}iz 0.81
FiBoat FrameWaterPlane}CEx 1.36
FiviBoat FrameWaterPlane}CEy 0.05
Fi{Boat FrameWaterPlane}CEz 017
HullDisplPercent 1974
Hydro
Altitude -0.06
DisplacemeniVolume 0.02
Dirait 006
FitBoat FrameWaterPlanelFx -26.26
FiMi{Boat FrameWaterPlane}Fy 0.00
Fri{Boat FrameWaterPlanelFz 20833
FriBoat FrameWaterPlane}ix 10.90
FiHBoat FrameWaterPlaneiiy -288.28
FiMi{Boat FrameWaterPlane}iiz 0.81
Fii{Boat FrameWaterPlane}CEx 1.36
Fii{Boat FrameWaterPlane}CEy 0.05
FiH{Boat FrameWaterPlane}CEz 017
FMDamping{Boat FrameWaterPlane}Fx 0.00
FrMDamping{Boat FrameWaterPlane}Fy 000
FriDamping{Boat FrameWaterPlane}Fz 000
FriDamping{Boat FrameWaterPlane Hidx 000
FMDamping{Boat. FrameWaterPlans}hy 0.00
FMDamping{Boat. FrameWaterPlang}Mz 0.00
FriDamping{Boat FrameWaterPlane}CEx 000
FriDamping{Boat. FrameWaterPlane}CEy 000
ChlMamminal/Daat CramnlflatarDlanalis T (W alal

Channels States GraphicsItems Model Definition

Figure 3.19: Hydrostatics function outputs in Gomboc’s GUI.

Obviously, a hull geometry is needed to solve these dynamics, which must be spec-
ified inside the "Hydro" block. In this case, like shown in Figure 3.18, a .IGES file
format is chosen. Important considerations on the hull file are related with the sur-
face names. For instance, in the Rhinoceros software, one can name the starboard
surface by selecting it, going to the properties tab, and then naming it to the desired
name. Figure 3.20 indicates the procedure. Then, in the .bic file, one should divide
the different surfaces accordingly (lines 11 to 13), and decide on the mesh represen-
tation by changing the nu and nv properties. Moreover, one must specify also to
which block are the forces and moments going to be reported, which in this case is
the "FM" block (line 15). Lines 16 to 18 are related with hydrodynamic coefficients.

Line 22 creates a variable to calculate the hull displacement percentage. For that,
it accesses the property DisplacementVolume of the "Hydro" block, the density
of the ocean, and the total model mass.

25

3. Methodology

T @ e 2
Ol#le@

Type open suface
Name HullStbd

Layer W Lo 05 [~
Display Color [By Layer =
Linetype By Layer I~
Print Color & By Layer [~
Print Width By Layer [~
Hyperiink [=]
Render Mesh Settings
Custom Mesh O
Setngs [e
Rendering
Casts shadows &
Receives shadows]
lsocurve Density
Density 1 =

Show suface isocurve] Visible

[Detaik. |

Figure 3.20: Naming a surface in Rhinoceros.

Finally, lines 25 to 36 load the hydrostatics mesh for the given hull geometry. The
graphical part is further discussed in section 3.3.1.13.

3.3.1.10 Centreboard Block

In the centreboard .bic file one should start by defining the centreboard bearing
points and its initial immersion as Figure 3.21 shows:

var rUBAxis = [1.89, @.ee, ©.33]; // top slider point
var rLBAxis = [1.88, @.ee, -8.83]; // bottom slider point
var rRotC = [1.88, 8.88, -8.83];

var rImmersion = [1.88, @.8@, -8.83-1.18];

L= ¥ B R

Figure 3.21: Centreboard bearings and immersion defined in JavaScript.

Line 3 refers to the top bearing point, line 4 to the bottom one, line 5 to the rotation
point, and line 6 to the initial centreboard immersion (not the centreboard span).
These are defined as normal variables.

Then, the "Centreboard" block is created and different settings are defined within
it. Figure 3.22 shows the initial part of the code. Similarly to the hull .bic file, a
"FM" block must be created in order to account for the centreboard and centrefoil
forces and moments. Lines 14, 15 and 16 create three blocks: "Rake", "Yaw' and
"Immersion", respectively, to be used as input blocks for the centreboard specifi-
cations. Line 18 defines the wand length, while line 19 calculates the flap angle
on the centrefoil. This is done by using a simple function, where for this case the
flap is allowed to change between -15 and 15 degrees depending on the Moth height
measured at the bow.

Finally, on line 21, a "Foil" block is created using the BL.Foilboc function. This
function is crucial to define certain inputs for the centreboard and centrefoil. The
following names for the different blocks shall not be changed for the same reasons
presented before. Thus, initially, one defines the main inputs for the centreboard
block as lines 22 to 26 show. In the "Inputs" block, the rake, yaw, extension and
canting of the foil are defined. Note that even though there is no such parameter

26

3. Methodology

like foil extension for a Moth, one must still specify it as zero. The reason for that is
because the "Inputs" block in the BL.Foilboc function requires the existence of the
whole four blocks in lines 23 to 26 to load the model in Gomboc. Furthermore, as
mentioned before, the inputs for these blocks must be existent blocks. For instance,
the "FoilRake" block must have as input a block created before line 21, which in this
case is implemented in line 14.

11 R.merge("Blocks." + boatSpec.Name + ".Centreboard”, {
12 "FM" : BL.ForceSum({TargetFrams : "{~.Frame}"}),
13

14 "Rake" ,

15 "Yauw" .8,

16 "Immersion” : "-{*.Frame}.pointInFrame(" + JSON.stringify(rImmersion) + ", {Root.InertialfFrame})[2]",
17

18 "WandLength" : 1.8, // meters

19 "Flapangle” : "{~.Height}" <= "{WandLength}" ? " -15 " : " 15 - (1/3) * asind({".Height}/{WandLength}) ",
28

21 "Foil" : BL.Foilboc({

22 "Inputs” : {

23 "FoilRake" : "{Rake}",

24 "FoilYaw" : "{Yaw}",

25 "FoilExt™ : "{Root.Zero}",

26 "FoilCant™ : "{Root.Zero}",

27 1,

28

29 "SectionMorphInput” : {

3e "CentreElevatorStbd™ : {

31 "InputName” : "Flapéngle”,

32 %

33 "CentreElevatorPort” @ {

34 "InputName"” : “"Flapéngle",

35 %

36 %

37

38 "Bearings" : {

39 "Type” : "Rotatingel”,

40 "rLBAxis" : rLBAxis,

41 "rUBAxis"™ : rUBAxis,

2 "eLBCh" : [1.0008, ©.0000, ©.2082],
43 "rRotC” : rRotc,

a4 "eCant” : [-1.00@, ©0.0000, 0.0008],
45 "eRake" : [@.cee, -1.0080, 6.ce8a] ,
46 "sLBHull"™ : @.8ea,

47 N

Figure 3.22: Centreboard Block defined in JavaScript - Part 1.

Before explaining the next lines, it might be smart to look into how the centreboard
and centrefoil geometry are created. This is done through a foil editor tool inside
Gomboc. After opening the software, one can click on ctri+2 to change to this foil
editor window. Moreover, ctrl+3 leads to the fluid-structure interaction tool, and
ctrl+4 to the dynamics solver window. The foil editor tool is shown in Figure 3.23.
First, on the FoilHolder window (bottom right corner), one must select which foil
wishes to edit. In this case, the Centreboard foil is chosen. Then, to make sure a
two element foil is selected (a T-foil is rather known as a two element foil), one can
click on the tool next to the green square to access the foil properties window, shown
in Figure 3.24. Here, the "Element_ 1" should define half of the centrefoil. For the
other half, one just needs to check the box "Duplicated and Reflected" and write
down a coherent name. On the other hand, "Element 0" defines the centreboard.
After closing this windown, on the top right corner, the Rondure window, one defines
the centreboard shape (seen from a rear view) and its span, as well as the centrefoil
shape (seen from a rear view) and its half-span. To accomplish that, the yellow

27

3. Methodology

"' Gomboc: D:/UOA/Gomboc/Models/ Moth/VPP/V001/V001-01.boc
file HTML Graphics Foil Layout Help

Twist 8 x Rondure
0.6
T
0.4+ ~0.35).360.250.260.150. 160.0900@. 05
0.2+
-0.0 T
40‘2070 0.2 0.4 0.6 0.8 10 L1
0.4 0.2
0.6,
® B c o
|| @ || 2 [centreboard - El N
Chord/Sweep Combi 8 x e
0.159
0.10 o Q-0
0.05+4
0.00 T T T T T 1 -0. 5!’
0.2 0.4 0.6 0.8 L0 11
-0.054
-0.10
& L3 ¢ o
LockSweep v || @ | 2| Cenreboard vlelld]a 0]
SectionlD = x
0.4+
0.2+
0.0 0r T T T —0—00
0.2 02 04 0.6 08 1.0 Bl 4.0
0.4+
iS5 ® © o
| @ | 2| [centreboard MR
Sections a x s
:0.301m P ARSI
NACA 0012 AIRFOILS) I ‘ El
Morph a0l FoilHolder 8 x
NACA 0012 AIRFOILS 0.0 0.00|
Bost Centreboard.Foil | Centreboard0l Centreboard |
+ M Boat.Rudder.Foil Rudder0l B0
push sections to report Centreboard ~

Figure 3.23:

Foil editor tool in Gomboc’s GUIL.

T Foil Properties

Fail Element_0 Element_1

Refit rondure with proportional knat spacing

Element name |Cenh'EEleuabJrPnrt

Rotation about |D
rondure [deq]

[] section Flipped

Duplicated and Reflected |CentreBlevatorSthd

Structural Properties for estimate

Elastic modulus E [GPa] |-_|45

Scale factor on computed I [m4] |1

Shear modulus G [GPa] |5

Scale factor on computed K [m4] |-_|

TE fraction cut (affects ynsC and I; does not affect xnSC and K) |D

LE fraction cut (affects ynSC and I; does not affect xnsC and K) |D

Close

28

Figure 3.24: Foil properties window in Gomboc’s GUI.

3. Methodology

points are adjusted along the span to achieve the desired shape, hence these are
known as control points. One can add/remove control points by clicking on them
with the mouse right-click. Furthermore, the letters represent stations for each
element. In this case, the centreboard runs from A to D, while the centrefoil from
A to G. However, these are only useful for the Chord/Sweep Combi window on the
left-hand side of Figure 3.23. Here it is possible to adjust the centreboard shape
seen from a side view. The user can design the shape by changing the controls
shown in Figure 3.25. There are many ways to achieve that and there is not really
a recommended procedure. It is important to play around with the controls until
the logic is understood. Then, one can change to the centrefoil, like it is shown in
Figure 3.25, and design it (half of it).

| Chord/Sweep Combi g X

0.15

0. ipWp========z==ss " EECLLEEEEELLEE FEPEEprapa S R L EL L L CEL PP PR En QO-00
0.05

i)

0.00 1 T T 1

040 0.2 0.4 0.6 0.8 1.0 1.1
-0.05

“’i . ¢

Lock Sweep v @ || &

Scale Chord

Lock Chord Centreboard
Lock Sweep Rudder

Lock TE RudderElevatorPort
Lock LE

Figure 3.25: Controls in the chord/sweep window to design the foil in Gomboc’s
GUL

Finally, coming back to Figure 3.23, it is also possible to define the twist along the
foil by moving the control points in the Twist window (top left corner). On the
bottom left corner, one can specify the desired section(s) along the foil. For this
case, the NACA 0012 section is already chosen. To add it, the + symbol marked
in red in Figure 3.26 should be clicked on and then a .dat file with the section
coordinates should be added.

Sections g X

P U NACA D012 AIRFOLS >

9 e Maorph alCL
— - — MACA 0012 AIRFOILS 0.0 0.00

+] &

push sections to report Centreboard R

Figure 3.26: Sections window in Gomboc’s GUI.

After that, a section properties window pops-up. One should then click on the plot
symbol to run X-FOIL for the section.

If, for instance, a morphed centreboard is desired, one can add as many sections as
wanted and then define in the SectionID window in Figure 3.23 the section shape

29

3. Methodology

along the foil. Note that each section has a number associated with, so in the
SectionID window one should manipulate the control points in order to meet a
given section number along the foil.

Once the centreboard is designed, one can select the centrefoil half as shown in
Figure 3.25 for all left-hand side windows in Figure 3.23. The Chord/Sweep Combi
window shows then half of the centrefoil seen from a top view. The controls are the
same as for the centreboard. The Twist and SectionID windows follow the same
logic presented before. However, attention should be given for the Sections window.
In this case, it is of interest to add a section with a flap. The way Gomboc handles
it is to add sections with different flap angles. To create the .dat files with the
different flap angles the author used the program XFLRS available online. When
opening this program, one should click on File and select Direct Foil Design. Then,
click on File again and select Open. A .dat file for a section with no flap should
be loaded. Once this step is completed, the section should appear on the screen.
Thus, by clicking on the section name with the mouse right-click, one can select
Set Flap and then check the box on T.E. Flap. The flap angle is inserted, as well
as the coordinates for the hinge (the author has used 70% of the chord for the
hinge X-position and 30% of the thickness for the hinge Y-position. By clicking
OK and properly naming the section, it should be created and added to the screen.
The procedure is repeated until one is satisfied with the amount of sections with
different flap angles. As last step, by clicking on the section name with the mouse
right-click, select Export and the section should be saved as a .dat file. Finally,
one can add the different sections following the procedure shown in Figure 3.26. It
is very important to add the sections in order, so start with the section with the
most negative flap angle. The section properties window pops-up just like for the
centreboard. On the right-hand side of the Shape Name, there is a text box for the
Morph Value that should take the section flap angle. Then, the following section
should be added and the Morph Value box filled with the respective flap angle. This
procedure is repeated for all the flap angles. Once that is completed, X-FOIL should
be run for all the sections. The outcome is shown in Figure 3.27.

Finally, when the centreboard and centrefoil designs are completed, one should click
on Foil on the Gomboc’s top bar, and save them as a .foil file.

So now, when looking again at Figure 3.22, it is easier to understand the process.
The BL.Foilboc function has an input block called "SectionMorphlnput", shown
on line 29, that loads the flap angle value, which is computed on line 19, to the
centrefoil flap. Since the centrefoil is defined in two parts, CentreElevatorStbd
and CentreElevatorPort, one has to specify the flap angle for both of them. For
instance, lines 33 and 34 connect the "FlapAngle" block on line 19 to the respective
CentreElevatorPort morph section previously defined in Figure 3.26. Remember
that no design needs to be specified for the CentreElevatorStbd because in Figure
3.24 the Duplicated and Reflected box is checked. This is automatically saved in
foil file.

30

3. Methodology

Sections n

FX 60-100 AIRFOIL o

Morph adCU
WORTMANN FX 50-100-1 -15.0 5.31
WORTMANN FX 60-100 -1 -14.0 4.67]
WORTMANN FX 50-100 -1 -13.0 4.01
WORTMANN FX 60-100 -1 -12.0 3.37]
WORTMANN FX 60-100 -1 -11.0 2,73
WORTMANN FX 60-100 -1 -10.0 2,07
WORTMANN FX 60-100 -0 9.0 1.42
WORTMANN FX 60-100 -0 -8.0 0,75
WORTMANN FX 60-100 -0 7.0 0.13
WORTMANN FX 20-100 -0 6.0 -0.51
WORTMANN FX 60-100 -0 -5.0 -1.18
WORTMANN FX 20-100 -0 -4.0 -1.81
WORTMANN FX 60-100 -0 -3.0 -2.45
WORTMANN FX 20-100 -0 -2.0 -3.10
WORTMANN FX 60-100 -0 -1.0 -3.75
WORTMANN FX 20-100 0¢ 0.0 -4.39
WORTMANN Fx 60-100 H 1.0 -5.03
WORTMANN FX 20-100 H 2.0 -5.58
WORTMANN Fx 60-100 H 3.0 -6.33
WORTMANN FX 60-100 H 4.0 -5.95
WORTMANN Fx 60-100 H 5.0 -7.63
WORTMANN FX 60-100 H 6.0 -8.28
WORTMANN Fx 60-100 H 7.0 891
WORTMANN FX 60-100 H 3.0 -9.54
WORTMANN FX 00-100 H 9.0 -10. 13
WORTMANN FX 60-100 + 10.0 -10.81
WORTMANN FX 50-100 + 11.0 -11.43
WORTMANN FX 60-100 + 12,0 -12.05
WORTMANN FX 50-100 + 13.0 -12.57
WORTMANN FX 60-100 + 14.0 -13.26)
WORTMANN FX 50-100 + 15.0 -13.86|

+ O

push sections to repart CentreElevatorPort

Figure 3.27: Sections window with the different flap angles in Gomboc’s GUI.

Lines 38 to 46 define the bearing points of the centreboard. On line 39, one can define
the bearing type, where "Rotating01" stands for a fixed, non-sliding bearing point.
Besides this one, the author knows that "Rotating02" is used for sliding bearings.
Then, lines 40 and 41 specify the upper and lower bearing points, while line 43 the
bearing rotation point. These blocks have as inputs the previously defined blocks
in Figure 3.21. Furthermore, the block "eCant" is related with the centreboard’s
cant rotation direction (there is no cant, so this is zero), while the "eRake" with the
centreboard’s rake rotation direction. Moreover, the author does not know what is
the role of the blocks "eLBCh" and "sLBHull".

Coming now to Figure 3.28, which is the continuation of Figure 3.22, line 49 creates
the "Analysis" block for the hydrodynamics of the centreboard and centrefoil. Line 51
says that the hydro analysis, forces and moments, is computed using the Weissinger
method, which is an extended lifting line theory. Alternatively, one can chose a
panel method by writing "Panel". The block "cdvScale" is believed to be related
with a viscous coefficient, while the "cdtSpray" block with a spray coefficient. Then,
lines 54 to 57 define how many segments should each part have, it works like a mesh;
a high number of segments improves the results accuracy, but it also requires more
computational power. Moving on to lines 59 to 60, here the free surface effects on
the foils are either taken or not into account. The boatSpec.kMirror variable is
defined in the beginning of the .boc file and it can take any value at all. A value of

31

3. Methodology

49 "Analysis" @ {

58 "Hydro" : {

51 "Type" » "Weissinger”,

52 "cdwScale" @ 1.1,

53 "cdtSpray” @ 1.8,

54 "nseg"” s

5% "Centreboard” : 22,

56 "CentreElevatorsthd” : 7,
57 "CentreElevatorPort” 7,
58 ¥

59 "kMirror™ : boatSpec.kMirror === undefined ? -1 : boatSpec.kMirror,
68 "bSurfaceLiftReduction” : boatSpec.kMirror == 8 ? true : false,
61 "cl5tallOnset™ @ 1.3,

62 "cl5tallFull™ : 2.3,

63 "FMName" : "FMT,

64 1

65 I

66

67 "ForceReport” : { "Type" : "Planelntersection™, "r": [&, @, 8], "n": [8, 1, 8] },
68

69 "@Graphicshodes™ @ {

78 "Shape" : {

71 "Type” » "FoilbocShape”,
72 "Elements" @]

73 "Centreboard” @ {

74 nu: 15,

75 nv: 68,

76 ¥s

77 "Centretlevatorsthd” @ {
78 nu:1s,

79 nv:28,

8o s

81 "CentreklevatorPort” @ {
82 nu:is,

83 nv:2e,

84 3

85 T

26 "Material” : "Materials/Foils.material.xml”,
87 "Bearings" : {

28 "Radius" : @.@3

89 }s

98 I

91 I

92 1

93 1

Figure 3.28: Centreboard Block defined in JavaScript - Part 2.

1.0 is a perfect mirror, while -1.0 is a negative mirror. Recommendations suggest to
use -1.0. Then, line 61 specifies at what lift coefficient the foil stall starts happening,
while line 62 refers to the full stall lift coefficient. Finally, line 63 links the forces
and moments to the "FM" block on line 12 in Figure 3.22.

Line 67 controls how the point of action of the forces is reported in Gomboc’s GUI.
It has no effect on the force balance, so it is only the reporting of that vector in
terms of a point of action. In this case, the "Planelntersection' type reports the
point of action as the intersection of the line of action with a plane that includes
the point "r" and has a unit normal "n".

Then, similarly to lines 25 to 36 in the hull .bic file in Figure 3.18, lines 69 to 88

32

3. Methodology

define the centreboard and centrefoil graphics. Here, the type is instead chosen as
"FoilbocShape" on line 71, and then the number of elements on the mesh for the
different parts is specified on lines 73 to 83. The foils material is then chosen. To
represent the bearings points, line 87 creates a block named 'Bearings' with the
respective radius in the following line. As mentioned before for the "Hull" block, the
graphical part is explained in more detail in section 3.3.1.13.

The next part of the "Centreboard" block is shown in Figure 3.29:

ag 2
96 /{ Include "*.foil" file(s)

a7 7 g
98 var foilFiles = filelist(spec.ownPath, ["*.foil"]);

99 if (foilrFiles.length < 2) {

120 /f Just add the file property without configuraticn

1@1 R.merge('Blocks." + boatSpec.Mame + '.Centreboard.Foil', {

1@2 "File" : spec.ownPath + feilFiles[@],

103 3

184 } else {

185 /f Include all foil shapes as a configuration

186 foilFiles.forEach(function (fileName) {

187 var CentreboardName = fileMame.substr(@, fileName.indexOf{"'."));

188 R.merge('Configurations.Centreboard.' + CentreboardName + '.Blocks.® + boatSpec.Mame + '.Centreboard.Foil', {
189 "File" : spec.ownPath + fileName,

110 5K

11 s

112 }

Figure 3.29: Centreboard Block defined in JavaScript - Part 3.

Line 98 saves the different .foil files previously created in the foil editor tool. Then,
on line 99, if there is only one file it is loaded to the "Centreboard.Foil" block (.Foil
refers to the Foilboc function). Alternatively, if there is more than one .foil file,
these are also loaded to the "Centreboard.Foil" block, but with the option to select
which one to use when running Gomboc. This is possible to observe in Figure 3.30:

Commands g X

Centreboardd1 ~| Rudder Rudder0i ~ | Solver |Dynamics ~| Ocean |Flat ~ | Wind |ARMA ~

e A
B L r om g

Centreboard

e Bl

Figure 3.30: Centreboard foil selection in Gomboc.

When investigating the centreboard .bic file, there are more code lines, which are
related with the "ShowFoilMeshGraphics" option in Figure 3.11. These are not
presented here since they are not relevant at the moment.

3.3.1.11 Rudder Block

This section follows the same logic as the section for the "Centreboard" block. The
only difference is the definition of the "FoilRake"' and "FoilYaw" input blocks for
the "Inputs" block in the BL.Foilboc function. The way these are implemented is
shown in Figure 3.31. As it is known, the sailor is able to adjust the rudder rake
while sailing. Therefore, on line 14, a "Rake" block is created using the BL.State
function, so the user can manually change it while running Gomboc or, if running the
optimisation solver, the rake can be optimised. Similarly, the "Helm" block follows
the same reasoning as the "Rake" block.

33

3. Methodology

18 F I e et ettt
11 R.merge("Blocks."+boatSpec.Name+" . Rudder”, {
12 "FM" @ BL.ForceSum({TargetFrame : "{"~.Frame}"}),
13
14 "Rake" : BL.State({ Init: @, Min: -5, Max: 5, Optimise: true }),
15 "Helm" : BL.State({ Init: @, Min: -4&, Max: 4@, Optimise: true }),
16 "Immersion™ @ "-{*.Frame}.pointInFrame(” + JSON.stringify(rImmersion) + ", {Root.InertialFrame})[2]",
17
18 "Foil" : BL.Foilboc({
19 "Inputs" @ {
28 "FoilRake" : "{Rakel}",
21 "Foilvaw" : "{Helm}",
22 "FoilExt" : "{Root.Zero}",
23 "FoilCant™ : "{Root.Zero}",
24 1,
Figure 3.31: Rudder rake and yaw defined in JavaScript.
3.3.1.12 Aero Block

The present aerodynamic model is divided into two components: sails and windage.
The forces and moments acting on the sails are calculated by scaling down aero
data in terms of force areas and moment volumes from a A-Cat. These are then
multiplied by a dynamic pressure based on the apparent wind speed. The data
is available as function of the apparent wind angle, flat and reef. Obviously, the
last parameter is not realistic since there is no sail reefing on a Moth. Therefore,
the current aero model definitely needs improvement in order to accurately predict
the boat performance. This block is not further explained since it was not much
investigated. Its JavaScript definition is shown in Figures 3.32 and 3.33.

34

R.merge("Blocks. "+boatSpec.Name+" . Rero™, {
"FM" : BL.Forcesum({TargetFrame : "{~.Frame}"})

"FramefercRef” : BL.FrameAlignToInertialZ({

1

R : [boatSpec.xAercRef, 8.0, 2.20],

"WindSensor” @ BL.ApparentiWind({}),

g

"@.5%1.185*({WindSensor.AWS}*{WindSensor.AWS})",

"sail" i {

I

"Flat™ @ BL.State({Init: ©.8, Min: @, Max: 1, Optimise: true}),
"Reef" @ BL.State({Init: e.s, Min: @, Max: 13}),

"Frame” : BL.FrameXfromParent({

ParentFrame : "{"".Frams}"

Translation : [boatSpec.xAsroRef, 6, 2.20],
DB

// Scaling:

f/f - size: 33: rig heigh of eeft, om: rig height of ACat

// - cos(heel) is a rough fudge because aero data is not in function of heel
"ScaleF" : "Math.pow(3/9, 2) * cosd({*".Heel})",

"ScaleM" : "Math.pow(3/9, 3) * cosd({*".Heel})",

"Fit" @ BL.Surface({

"File" : spec.ownPath+"Aerogl pzf.json”,
1,
"FM" : BL.ForceMoment({
: ["{scaleF}*{~.q}*{Fit.Fx}", "-{ScaleF}*{~.q}*{Fit.Fy}", "-{ScaleF}*{~.q}*{Fit.Fz}"], // - sign on Fy and Fz
"M ["-{ScaleM}*{~.q}={Fit.Mx}", "-{ScaleM}*{~.q}*{Fit.My}", "{Scalem}*{~.q}*{Fit.Mz}"], // - sign on Mx and My
"ForceReport” @ {"Type" : "PlanelInterssction™, "r" : [8, @, 8], "n" : [0, 1, 811},

I

Figure 3.32: Aero block - Sail forces and moments defined in JavaScript.

3. Methodology

39 "Windage" : {

48 "FM" : BL.ForceSum({TargetFrams : "{"““.Frame}"}},
41

42 "Hull™ : BL.Windageel({

43 "cd” » 1.13,

a4 "frontA" : @9.15,

45 "sidea™ @ 1.2,

46 "vertd” @ 9.9,

a7 "rCE" : [boatSpec.xRefLCEB, B, ©.28],
48 I

49

ca "Wings" : BL.Windageel({

51 "cd” » 1.13,

52 "frontdA" : 0.1,

53 "sidefd™ @ 9.45,

54 "vertd” @ 9.58,

55 "RCE" : [e.75, 8, 8.50],
56 I

57

t8 "Mast" : BL.Windageel({

59 "cd” » 1.13,

6@ "frontdA" : @0.28,

61 "sidepd™ @ 9.28,

62 "vertd” @8,

63 "rCE" : [boatSpec.xheroRef, 8, 2.28],
6 I

6

66 "Craw” : BL.Windageel({

67 "cd” » 1.13,

6 "R » B8.18,

69 "RCE” . [@e.9, 1.125, @.7],
7 s

7 Is

Figure 3.33: Aero block - Windage defined in JavaScript.

3.3.1.13 Body Graphics Block

Besides the centreboard, centrefoil, rudder, rudderfoil, and hull (if the the option
"ShowHydrostaticsMesh' is selected), everything else in the Moth is purely a graph-
ical representation. Figure 3.34 shows these graphical part of the code. So, for the
"@BodyGraphics" block in Figure 3.6 (this block should be named like this), there
is an input block called "GraphicsNodes" on line 196 that saves the graphical rep-
resentation of the different boat’s parts. For instance, on line 214, the sail graphics
is implemented. A "Sail" block is first created. Then, the graphical representation
part is specified as "SceneGraphFile". The different available types can be consulted
in:

Gomboc/Runtime/GraphicsControllerNodeTypes

In fact, for the "Hull" block in Figure 3.18, one can observe on line 30 that the chosen
type is "HydrostaticsShape". Moreover, for the "Centreboard" block in Figure 3.28
on line 71, the type used is "FoilbocShape".

Coming back to Figure 3.34, besides the type of the graphical representation, one
must also add, for the "Sail" block case, the respective scene file. The models must
be converted into a custom internal format before they can be loaded in Gomboc.

35

3. Methodology

191 R .
192 // Define boat Graphics

193 R .
194 R.merge("Blocks." + boatSpec.Mame, {

195 "@BodyGraphics" : {

196 "GraphicsNodes™ : {

197

198 "Gantry" @ {

199 "Type" @ "SceneGraphFile”,

200 "File" : "Gantry/Gantry®l/Gantry@l.scene.xml”,

201 1.

282 "WingsBars" : {

283 "Type" : "SceneGraphFile”,

284 "File" : "Wings/Wings@l/Bars8l/Bars@l.scene.xml”,

285 1,

286 "WingsTramps™ : {

287 "Type"” @ "SceneGraphFile”,

208 "File" : "Wings/Wings@l/Tramps@l/Tramps@l.scene.xml”,
209 1.

218 "Mast” @ {

211 "Type" : "SceneGraphFile”,

212 "File" : "Mast/Mastel/Mastel.scene.xml”,

213 1,

214 "sail” 4

215 "Type" : "SceneGraphFile”,

216 "File" : "Sail/Sasilel/szilel.scene.xml”,

217 [/ "TransformUnitXToTwoPoints"” : {

218 I "pr1Channel” : "Zero",

219 I "r2Channel™ : "Zero",

228 ff "Scalex™ : "Boat.TWA",

221 I "Scaley™ : "Boat.TWA",

222 Iy

223 Ts

224 "CrewCa” : {

225 "Type" @ "CrewCG",

226 "Material™ : "Human.material.xml",

227 K" "Boat.CrewxPos”,

228 "y" . "Boat.CrewYPos",

229 "Z" 8.7,

230 1,

231 1,

232

233 // To view reference frames, uncomment one of the lines below
234 /f (it's a regular expression to filter the reference frames)
235 "ReferenceFrames™ : ".%", // Show all reference frames
236

237 /{ To view force arrows, uncomment one of the lines below
238 "Forceldrrows” @ ".¥",

239 // "ForceArrows" : "“Boat.Weight.FM|*Boat.Aero.FM$|" +

240 I "~Boat.Hull.Hull$%|~Boat.Hull.Foil$|~Boat.Hull.Rudder$|” +
241 I "~Boat.Stbd.Hull$|~Boat.Stbd.Foil$|~Boat.Stbd.Rudders”,
242 1,

243 B

244

245 if (!boatSpec.ShowHydrostaticsMesh) {

246 [/ Only show textured hulls if not displaying hydrostatics mesh
247 R.merge("Blocks."” + boatSpec.Mame, {

248 "@BodyGraphics" : {

249 "GraphicsNodes™ @ {

258 "Hull" : {

251 "Type" : "SceneGraphFile”,

252 "File" : "Hull/Hull@1l/Hull®l.scene.xml",

253 +s

254 1.

255 1,

256 s

257 }

Figure 3.34: Moth parts graphical representation defined in JavaScript.

36

3. Methodology

This prepare step converts the mesh into a format that is optimised for very quick
loading and rendering performance. Gomboc uses the Horde3D engine for visuali-
sation along with its file format. The conversion process generates some .xml and
.geo files. The .scene.xml, like on line 216, is the file that can be included in
a configuration file for rendering. Models can be prepared through the menu op-
tion Graphics and then selecting Convert Model. Only the basic conversion options
are available through Gomboc’s GUI. More conversion options are available on the
JavaScript console, where more information can be read in:

Gomboc/Runtime/Help/graphics/prepareModels.html
So, when clicking on Convert Model in Gomboc’s GUI, a new window opens, which

is shown in Figure 3.35

¥ Convert Graphics Model ? *

Input file of folder |D:ﬂJO.ﬁ.fGl:umI:n:n:,u'M|:|dels,"M-:uﬂﬁ,"Graphin:s,"SaiIfSaiIEl 1/5ail01. obj |

Resource path |'|,'Sail'|5.3iIEIl |
D: UOAVGombocMadelsMoth\Graphics\Sail\Sail0 1

Save Cancel

Figure 3.35: Convert Graphics Model in Gomboc’s GUI.

As it can be observed, one needs to specify an input file. It can either be a .dat
or .obj file. The author used Rhinoceros to convert the sail geometry into a .obj
file. After this step, the Resource Path must be named, which is the relative path
of where the results are written to.

Then, as mentioned before, a .obj and .scene.xml file are created. Figure 3.36
shows the content inside the later file:

[& pavo. p nexml - Notepad++ - X
File Edit Search View Encoding Language Settings Tools Mscro Run Plugins Window ? x

s B s s al Py 25| EBEH|m1EEBRa =8 Bl
[5ail01 scene xml £3 1
‘ 1 Tkmmsl name="3aildl" geometry="/Sail/Sail0l.gea"> ‘

<Mesh name="object 1" material="Materials/Default.material.xml” batchStart="0" batchCount="12996" vertR5tart="0" vertREnd="2607" />
</Model>

Figure 3.36: Initial sail scene file.

The most important thing to note out in Figure 3.36 is the material part (mate-
rial="Materials/Default.material.xml"). This is directly connected to the following
directory:

Gomboc/Runtime/Graphics/Materials

Many more materials can be found here. Moreover, if one goes one folder back,
there are other graphics input to explore.

37

Gomboc/Runtime/Help/graphics/prepareModels.html
Gomboc/Runtime/Graphics/Materials

3. Methodology

For the purpose of this project, it is of interest to modify the sail material in order
to output the team logo on the sail. The author has thus created a new material,
shown in Figure 3.37:

[& pavo, p L. materialxm| - Notepads+ - X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 7 x
PYE) 2 s & | EERIE == EREEED IR) ®l

5 Salmatoradcnl 3 |

M. 1
2 <Shader source="Shaders/Model.shader" />
4 <Sam edoMap” ail/sail0l/custom.png" />
s v - "
U

seCol" 2="0.5" b="0.5" c="0.5" d="1.0" />
rams" a="0.3" L="0.3" c="0.3" 4="0.3" />
</Materia.

Figure 3.37: Sail material file.

On line 4, one can see the mapping of a .png file. This is a file created in Paint with
the team logo and the Doyle Sails logo (the sail’s sponsor for the team). Its final
design is a result of trial error adjustments until the author achieved the desired
outcome in Gomboc’s GUIL. The final sail scene file is thus showed in Figure 3.38

[& pawo pl \Sail01 scenexml - Notepad++ - X
File Edit Search View Encoding Llanguage Settings Tools Macro Run Plugins Window 7 X
PYe) k=] [2cimylas|BE %1 EEha® @ B
5 Saild1 scene xml 3]

1 T}{Mndel name="Sail01" geometry="Sail/Sail01/Sail0l.geo">

<Mesh name="object 1" material="Sail/Sail0l/Sail.material.xml" batch3tart="0" batchCount="12996" vertRStart="0" vertREnd="2607" />
</Model>

Figure 3.38: Final sail scene file.

Coming back to Figure 3.34, on lines 217 to 221 there is code that is not used. This
is an attempt from the author to mimic the change of sail shape from port to star-
board when tacking/gybing. The other graphical blocks: "Gantry", "WingsBars',
"WingsTramps" and "Mast" follow the same logic as the "Sail" block. The "CrewCG"
block on line 224 is of a different type. It simply outputs an arrow at the coordinates
specified on the input blocks "X", "Y", and "Z". Lines 245 to 252 output the hull
graphics if the option "ShowHydrostaticsMesh" is false. The final boat graphics can
be visualised in Figure 3.40.

3.3.2 Ocean Block

Now that the "Boat" block is explained, the "Ocean" block in Figure 3.4 is ex-
plored. Like mentioned in section 3.1, this block is defined inside the Ocean direc-
tory. Here one can find three different .bic files: Flat, JONSWAP_10-TWS and
JONSWAP _ 20-TWS. The first file is defined in JavaScript as shown in Figure 3.39:

1 (function (=pec)

2

3 return {

4 "Blocks" : {

5 "Oczan”™ : BL.FlatOcean({"Materials/OceanTrans.material.xml"},
6 1,

3 1

Figure 3.39: Flat Ocean defined in JavaScript.

38

3. Methodology

Figure 3.40: Moth Graphics.

In this case, the "Ocean" block is created using the BL.FlatOcean function, where
the ocean graphics is defined. This ocean does not have waves. Furthermore, this
function is found twice in the following directories:

Gomboc/Runtime/Blocks

Gomboc/Runtime/GraphicsControllerNodeTypes

Where the file in the first directory handles the physical information and the one in
the second outputs the graphical part of the ocean.

The JONSWAP__10-TWS ocean is implemented as shown in Figure 3.41.

39

Gomboc/Runtime/Blocks
Gomboc/Runtime/GraphicsControllerNodeTypes

3. Methodology

1 (function (spec)
2

{

var waveDirection = 83

4 var TWS_kts = 1@;

5 var fetch = 580@;

6

7 var R = bicObj(spec);

8 R.merge("Blocks", {

9 "Ocean”™ : BL.SinSumOcean({

18 Waves : JONSWAP(TWS_ kts * 1852 / 3e@e, fetch, waveDirection, &, &),
11 SecondaryAmplitude : 1/5,
12 VelocityScale : 1,

13 1)

14 3

15 return R;

16 })

Figure 3.41: Jonswap Ocean defined in JavaScript.

Line 3 specifies the wave direction, line 4 the true wind speed in knots, and line
5 the fetch length in meters. Then, on line 9 the "Ocean" block is defined using
the BL.SinSumOcean function. This function is also found twice, for the same
reasons, in the directories referred just above. Its inputs are first the Waves on line
10, which is implemented using the JONSWAP function found in:

Gomboc/Runtime/Utils

This function sets the number of waves and their characteristics. Line 11 defines
the ocean secondary amplitude, and line 12 the velocity scale, where 1 is believed
to be real life velocity. The JONSWAP_ 20-TWS ocean follows exactly the same
structure, where the only differences are the true wind speed and fetch length.

3.3.3 Wind Block

The "Wind" block is found inside the Wind directory, as mentioned in section 3.1.
Two .bic files are found here: Constant and ARMA. The first one is defined in
JavaScript like shown in Figure 3.42:

1 (function (spec)
2

{
var R = bicObj(spec);

4
5 R.merge("Blocks", {

6 "BaseTWs_kts" : BL.State({ Init : 12, Min : &, Max : 25 }),
7 "BaseThs" 1 "{BaseTWS_kts}/3688%1852",

8 "BaseTWD" : BL.State({ Init : @& }),

9

18 "Wind" : BL.ConstantWind({

11 "RefHeight” : 18.8,

12 "TwsExponent” : 8.1,

13 "HasBaseWindInput” : true,

14 .

15 3

16

17 return R;

18 1)

Figure 3.42: Constant Wind defined in JavaScript.

40

Gomboc/Runtime/Utils

3. Methodology

Lines 6, 7 and 8 define the blocks "BaseTWS_ kts", "BaseTWS" and "BaseTWD'
presented in Figure 3.4, respectively. These are connected with the "Wind" block
and are essential for its functionality, and hence for Gomboc to run. Moreover, their
names must not be changed. On line 10, the "Wind" block is created using the
BL.ConstantWind function found in:

Gomboc/Runtime/Blocks

The wind profiles are normally described as an exponential function of height. There-
fore, line 11 defines the reference wind height (used, for instance, in Figure 3.13),
and line 12 specifies the exponent used in the just mentioned exponential function.
This exponent is related with the boundary layer characteristics, where the Inter-
national Measurement System (IMS) recommends a value of 0.109. Finally, line 13
assures that lines 6, 7 and 8 are connected with the "Wind" block.

The ARMA wind is built using an Autoregressive Moving Average (ARMA) model.
Its .bic file is shown in Figure 3.43:

1 (function (spec)

2 {

3 var R = bicObj(spec);

4

5 R.merge("Blocks™, {

6 "BaseTWs kts" : BL.State({ Init : 12 }),
7 "BazaTws" : "{BaseTWs_kts}/3eee@*1852",
3 "BazaTWD" : BL.State({ Init @ & }),
9

18 "Wind" : BL.ARMAWind({

11 "RefHeight" 1 1@.e,

12 "TwsExponent™ : 8.1,

13 "HasBaseWindInput” : true,

14 "TWsParam” : {

15 "StdwWalk” @8.225 * 1852/3608,
16 "StdInst” 8.82 * 1852/36608,
17 "ConvRate" : @.83,

18 T

19 "TWDParam” : {

20 "StdwWalk” 1.3,

21 "StdInst” 8.2,

22 "ConvRate™ : 8.83,

23 T

24 Fa

25 I F

26

27 return R;

28 1)

Figure 3.43: ARMA Wind defined in JavaScript.

It is possible to observe that its implementation is very similar to the Constant
wind in Figure 3.42. The main difference is on line 10, where the BL.ARMAWind
function is used, which can be found in:

Gomboc/Runtime/Blocks

Furthermore, on lines 14 to 17, true wind speed parameters are defined, while on
lines 19 to 22, true wind direction parameters are specified. The author is not sure
about their meaning.

41

Gomboc/Runtime/Blocks
Gomboc/Runtime/Blocks

3. Methodology

3.4 Devices Block

A good description about the Devices block can be read in:
Gomboc/Runtime/Help/devices.html

Devices allow to interface external devices with the Gomboc real time simulation.
This can be used to read inputs like wheels and buttons and output values like force
feedback to wheels or external LED or displays. For this project, the keyboard keys
are used to read inputs channels. This device is initialised by loading the .bic file
shown in Figure 3.44:

1 {(function {spec, boztSpec)

2 {

3 var R = bicObj(spac)

4

5 R.merge("Devices.Statelnputs”, {

6 "Boat.Rudder.Helm™ : [

7 {

a DeviceNams : "WheelG28",
=] Channel : "Wheel™,
18 F : function(v) {
11 return 1-v;
12 }
13 s
14 {
15 DevicelNams : "Keyboard",
16 Inc : "Right",
17 Dec : "Left™,
18 Rate : 5.8,
19 >
28 1s
21
22 "Boat.Aero.5zil.Flat” : [
23 {
24 DeviceNams : "WheelG28",
25 Dec : "Minus",
26 Inc : "Plus™,
27 Rate . 8.5,
28 Ts
20 {
38 DeviceName : "Keyboard”,
31 Inc "D,
32 Dec : "F",
33 Rate . 8.5,
34 IR
35 1.

Figure 3.44: Devices block snippet defined in JavaScript.

The property Devices.StateInputs on line 5 defines how the devices are mapped
into the block states. The key is the state block name and the array defines the
different possible mappings for that state. For instance, lines 6 to 20 implement

42

Gomboc/Runtime/Help/devices.html

3. Methodology

how the helm is to be controlled. There are two possibilities: first, lines 8 to 11
specify the usage of a driving wheel, and second, lines 15 to 18 the usage of the
keyboard. The wheel option is shown just so the reader has an idea about how it
would work. Furthermore, line 18 specifies how sensitive the rudder angle change
is to the respective keyboard key (when pressing it). The flat parameter on line 22
follows the same idea.

3.5 Overlays

The Overlays block is the 2D information displayed on top of the 3D scene. It
typically consists of numbers and other gauges to display data from the model. The
output is shown in Figure 3.45:

Rudder Rake
Flat

Reef

Cantraboard lmmersian

Figure 3.45: Overlays block output in Gomboc’s GUI.

In Figure 3.45 there are two types of overlays: a table view of channels on the top
right corner and bars representing channel values on the bottom. The first type
implementation in JavaScript is shown in Figure 3.46.

43

3. Methodology

5 R.merge("Graphics™, {

6 "Overlays" @ [

7 {

3 "Type" : "Data",

g "Name™ : "Data",
18 "Layout" : {
11 [/ 5izes are relative to view's heigth.
12 // Formulas with aspect ratio (ar=width/heigh) are allowed.
13 e : "ar-2.385",
14 "y . @.aes,
15 "width" : 8.3,
16 b
17
18 "Channels" : [
19 {"TWS knots” : "Block.Boat.TWS_kts"},
20 {"Tha" : "Block.Boat.TWA"},
21 {"AWA" : "Block.Boat.Aero.WindSensor. AWA"Y,
22 {"Speed knots" : "Block.Boat.Spead kts"}l,
23 {"Leeway"” : "Block.Boat.Leeway"},
24 {"Heel" : "Block.Boat.Heel"},
25 {"Trim" : "Block.Boat.Trim"},
26 {"Ride Height" : "Block.Boat.Height"},
27 {"Flap Angle” : "Block.Boat.Centreboard.Flapingle"},
28 {"Helm" : "Block.Boat.Rudder.Helm"},
29 {"Rudder Rake" : "Block.Boat.Rudder.Rake"?},
38 {"Flat" : "Block.Boat.fero.Sail.Flat"},
31 {"Resf" : "Block.Boat.fero.Sail.Reaf"},
32 1.
33 s

Figure 3.46: Overlays block - Data defined in JavaScript.

First, one should note on the first two lines that the Overlays block is defined inside
the Graphics block. It is important to note that each overlay entry consists of
at least the Type and Layout properties. The additional properties depend on the
Type. The Layout property defines the location on the screen. The sizes are relative
to the view’s height. It can be a number or a simple JavaScript expression. The
ar variable represents the aspect ratio of the screen (ar = width/height). So, on
lines 8 to 31 the table view of channels is created. The Data overlay automatically
sizes the height based on the width and number of channels. Moreover, lines 18 to
31 define the different channels the user is interested in keeping track of.

Finally, Figure 3.48 shows how to implement in JavaScript the hull displacement
percentage bar represented on the bottom of Figure 3.45.

Furthermore, the Overlays .bic file is loaded at the very end of the .boc file as it is
shown in Figure 3.47:

308 // Add overlays
381 R.mergeBicConfigs("", "Overlays", spec.bocPath + "Configurations/Overlays”, boatSpec);

Figure 3.47: Overlays files loaded in JavaScript.

44

3. Methodology

89 /f Hull

99 {

91 "Type” @ "Bar",

92 "Layout" @ {

93 "W : 8.8es5,

a4 "yt : e.95,

a5 "Width" : "1.8%ar-@.81",
96 "Height" : ©.84,

97 %

99 "Bars" : [

10@ {

1e1 "Label” : "Hull Displacement Percentage”,

102 "Channel” ¢ "Block.Beat.Hull.HullDisplPercent”,
183 "LabelColor” : {r:e.e, g:e.e, b:g.e},

184 "BarColor” : {r:1.8, g:1.8, b:1.8},

185 I8

106 1.

108 "Min" H a,

1e9 "Max” : lee,

118 "TickSpacing” ;o 18,

111 "BackgroundColor™ : {r:8.2, g:
112 "GridColor” t {r:8.6, g
113 1

2, b:8.2, a:8.95},
6, b:8.6

a.
8.6, .6, @a:18.9 },

Figure 3.48: Overlays block - Hull displacement percentage bar defined in
JavaScript.

3.6 Solvers

At the very end of the .boc file, the solver .bic files are loaded as it is shown in
Figure 3.49:

297 // Add solver
208 R.mergeBicConfigs("", "Solver”, spec.bocPath + "Configurations/Solver”, boatSpec);

Figure 3.49: Solvers files loaded in JavaScript.

There are two solvers files: dynamics solver and optimisation solver. In Figure 3.50
one can visualise how to implement the first one in JavaScript:

1 (function (spec, boatSpec)

2 {

3 var R = bicObj(spec)

4

5 R.mergeBicConfigs("", "Ocean", spec.bocPath + "Configurations/Ocean™, boatSpec);
6 R.mergeBicConfigs("", "Wind", spec.bocPath + "Configurations/Wind", boatSpec);

7 R.mergeBicConfigs("", "Input”, spec.bocPath + "Configurations/Input™, boatSpec);
8

9 return R;
8 1)

Figure 3.50: Dynamics solver defined in JavaScript.

As it is possible to observe, there is nothing special about it. It only loads the
different .bic ocean, wind and devices files.

The optimisation solver .bic file implementation is shown in Figure 3.51.

45

3. Methodology

1 (function (spec, boatSpec)

ER

3 var R = bicObj(spec)

4

5 e e et EE LT E L T
6 // Define some properties shared by every optimisation configuration

7 F e e e e e E LT P
3 R.mergeBicConfigs("", "Ocean”, spec.bocPath + "Configurations/Ocean™, boatSpec);

9 R.mergeBicConfigs("", "Wind", spec.bocPath + "Configurations/Wind", boatSpec);

18

11 R.merge(’", {

12 "Blocks™ : {

13 "Cost" @ "-{"+boatSpec.Name+".VMC_kts}",

14 s

15

16 "Tags" : {

17 "BoatName™ : spec.bocFileName,

18 "RefBest” : "Boat.wMC_kts",

19 "RefUnigue™ : "Boat.TWs_kts",

28 s

- 1

22

23 R.merge('Blocks." + boatSpec.Mame, {

24 "CWATgt™ : BL.State({Init : %@, Min : @, Max : 188}),

25 "WMC_kts" 1 "{Speed_kts}*cosd({CWA}-{CWATEL})",

26

27 // Boat states depend on the optimisation variables

28 "x" o8,

29 "yt o8,

38 "z" @ "{Optimisation.Height}",

31 "e" 1 "-{Optimisaticn.Heel}*pi/18@",

32 "o "-{Optimisation.Trim}*pi/18e",

33 "g" i "alimit36e(98-{Optimisation.HDG})*pi/188",

34 "u" : "cosd({Optimisation.Trim})*{Optimisation.Speed}”,

35 "v" i "sind(-{Optimisation.Trim})*sind(-{Optimisation.Heel})*{Optimisation.Speed} +
36 "w" i "sind(-{Optimisation.Trim})*cosd(-{Optimisation.Heel})*{Optimisation.Speed} -
37 "p" 8,

38 "gq" i 8,

39 “r" .8,
48
41 "Optimisation™ : {
42 // Optimisation variables (the bodys states are derived from that)
43 "Speed” @ BL.State({Init : 7, Min : 1, Max : 28, Optimise : truel),
44 "Lesway" @ BL.State({Init : 8, Min @ -4, Max : 4, Optimise : true}),
45 "Height™ : BL.State({Init : @.2, Min :-8.2, Max : 8.2, Optimise : true}),
46 "Trim" : BL.State({Init : @, Min : -4, Max : 4, Optimise : true}),
47 "Heel" : BL.State({Init : 28, Min @ 15, Max : 25, Optimise : true}),
48 "HDG" : BL.State({Init : 278, Min : 198, Max : 325, Optimise : true}),
49

58 // General constraints

51 "CFx" : BL.EQeConstraint("[~.FM}.F({)[@]/1ed"),

52 "CFy" : BL.EQ@Constraint("[~.FM}.F({)[1]/1e4"),

53 "CFz" : BL.EQeConstraint("{~.FM}.F({)[2]/1e4"),

54 "CMx" : BL.EQeConstraint("{~.FM}.M{)[8]/1e6"),

55 "CMy" : BL.EQ@Constraint("[~.FM}.M{)[1]/1e6"),

56 "CMz" : BL.EQeConstraint("[~.FM}.M{)[2]/1e6"),

57 %

58 1

Figure 3.51: Optimisation solver defined in JavaScript.

Initially, the ocean and wind .bic files are loaded, just as the dynamics solver.
There is no devices loading because the optimisation solver runs by itself. On
line 13 there is a new block called Cost, which defines the optimisation objective
function. Jumping on to lines 27 to 39, one can notice that the boat states are now

46

3. Methodology

calculated depending on the optimisation variables, which are defined on lines 43
to 48. Besides this optimisation variables, whenever one writes "Optimise: true" in
variables created in other files, the optimisation solver takes them also into account.
Lines 51 to 56 are related with constraints, which are not further investigated.

Besides this solver file, there are also optimisation configurations files, which makes
it easier to change around different sailing conditions in Gomboc’s GUI. A upwind
sailing condition is created as .bic file like shown in Figure 3.52:

1 (function (spec, boatSpec)

2 {

3 var R = bicObj(spec);

4

5 R.merge("", {

6 "Blocks™ : {

7 "BaseTWS_kts" : BL.State({Init : 12, Min : 6, Max : 28}),
8 T

Q

18 "Tags" {

11 "ModeName” @ spec.ounFileName,

12 +,

13 1)
14
15 R.merge('Blocks." + boatSpec.Name, {
16 "CWATgt™ @ @,
17
18 "Optimisation” @ {
19 "HDG" : BL.State({Init : 65, Mim : 35, Max : 88, Optimise : truel}),
28 "Height" : BL.State({Init : 8.1, Min : -8.2, Max : 8.9, Optimise : truel}l),
21 I
22 R
23
24 return R;
25 1

Figure 3.52: Optimisation solver defined in JavaScript.

On line 7 one defines the range of true wind speeds to be run in the optimisation.
Then, lines 15 to 20 update the optimisation setup for some specific variables.

47

3. Methodology

48

4

Results and Discussion

As the goal of this project is to setup a Moth model in Gomboc and to leave docu-
mentation about it, there are not results in terms of "What is the best design?" to
be presented. Therefore, the author decided to do a simple test case to show that
the dynamics solver is working reasonably well.

(a) Geometry 1 - Rectangular planform shape.

(b) Geometry 2 - Complex planform shape.

Figure 4.1: Centrefoil and rudderfoil geometries - Test case.

49

4. Results and Discussion

In Figure 4.1, two different geometries for the centrefoil and rudderfoil are shown.
The test consists in comparing both for different wind conditions on a tight reach.
The first one is for a true wind speed equal to 8 knots to observe what geometry helps
to take-off earlier. As expected, the Moth with geometry 1 takes-off immediately,
since it has more lifting area. In fact, with geometry 2 it is needed to bear away to
downwind to increase the sail power, and thus to accelerate the flow over the foils.
After this, the top speed is tested on a tight reach. It is observed that the geometry
1 stabilises around 13.5 knots, while the geometry 2 around 14.2 knots. So, the
less drag on the later geometry pays-off when evaluating maximum speeds, which is
expected as well.

The second test is for a true wind speed equal to 10 knots, where the goal is to
visualise the maximum speed achieved for both geometries on a tight reach. Again,
geometry 2 provides higher speeds, but this time being 1 knot faster, which is a
quite substantial difference. It sails at around 18 knots.

50

4. Results and Discussion

51

4. Results and Discussion

52

O

Conclusion and Future Work

In conclusion, the project is successful since there is a Moth model working in
Gomboc. Besides that, this report provides new documentation about how to operate
Gomboc and its connections to JavaScript, which the author believes to be very
helpful for the Foiling Yacht Innovation team. It is further concluded, that this
software is very versatile, which is expected since a team like Emirates Team New
Zealand uses it quite extensively. Moreover, it allows to a great time and money
saving, since different designs can easily be tested for different sailing conditions and
configurations.

As future work, the author strongly recommends the improvement of the aero model
in first place. High quality aero data is already collected, so it is only missing to
understand how to implement it in JavaScript. After that, in order to further
improve the accuracy of the results, the weight data (masses, centre of masses and
inertias) should also be specified with more precision. Finally, once these two steps
are completed, one is ready to move to the design optimisation stage.

53

5. Conclusion and Future Work

o4

References

Association, I. M. C. (2019). Racing. Retrieved, from http://www.moth-sailing.
org/history/

Beaver, B., & Zseleczky, J. (2009). Full Scale Measurements on a Hydrofoil Inter-
national Moth. In The 19th chesapeake sailing yacht symposium, Annapolis,
USA.

Bethwaite, F. (2008). Higher Performance Sailing: Faster Handling Techniques. Lon-
don, UK: Adlard Coles Nautical.

Fossati, F. (2009). Aero-Hydrodynamics and the Performance of Sailing Yachts (1st
ed). London, UK: Adlard Coles Nautical.

Henshall, D. (2019). And now for something completely different - The International
Moth story. Retrieved October 4, 2019, from https://www.sail-world.com /
news/215173 / And-now-for-something-completely-different

Wilkins, I. (2017). Gomboc: A design high-flier for ETNZ. BREEZE, 34-37.

95

http://www.moth-sailing.org/history/
http://www.moth-sailing.org/history/
https://www.sail-world.com/news/215173/And-now-for-something-completely-different
https://www.sail-world.com/news/215173/And-now-for-something-completely-different

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms and Initialisms
	Introduction
	The International Moth Class
	Background and Context
	Gomboc
	Internship Goal

	Theory
	Parts of Gomboc
	Gomboc.exe
	JavaScript

	Understanding Gomboc
	Blocks
	Prerequisites
	Model Body States and Parameters
	Body States
	Parameters

	Reference Frames

	Methodology
	Working Directory
	Root Level Connections
	Blocks Block
	Boat Block
	Body Block
	FM Block
	Mass Block
	Body States Blocks
	Frames Blocks
	Locked and Function Parameters Blocks
	Free Parameters Blocks
	Weight Block
	Hull Block
	Centreboard Block
	Rudder Block
	Aero Block
	Body Graphics Block

	Ocean Block
	Wind Block

	Devices Block
	Overlays
	Solvers

	Results and Discussion
	Conclusion and Future Work
	References

